Science, Technologies, Innovations №2(26) 2023, 56-63 p

Tertyshna O. V. — D. Sc. in Engineering, Professor, State institution of higher education “Ukrainian State University of Chemical Technology”, 8, Haharin Av., Dnipro, Ukraine, 49005; +38 (066) 224-93-66;;
ORCID: 0000-0003-3054-9291

Zamikula K. O. — Postgraduate Student, State institution of higher education “Ukrainian State University of Chemical Technology”, 8, Haharin Av., Dnipro, Ukraine, 49005; +38 (096) 343-87-51;; ORCID: 0000-0001-5139-6429

Tertyshnyi O. O. — PhD in Engineering, Associate Professor, Dnipro State Agrarian and Economic University, 25, Serhiy Yefremov Str., Dnipro, Ukraine, 49005; +38 (066) 224-93-61;; ORCID: 0000-0002-9315-6826


Abstract. The study examines the existing asphaltene flocculation inhibitors in oil dispersed systems — oil-soluble surfactants of various nature. It is proposed to use cheap surfactants of vegetable origin as flocculation inhibitors — phosphatide concentrate and sodium sulfosuccinate. The process of flocculation of asphaltenes on model mixtures of asphaltenes of different concentrations with toluene and precipitants, as well as the influence of the proposed inhibitors on the aggregative stability of the mixtures, was studied. The flocculation starting point (onset point) of each mixture was determined by the photocolorimetric method.

Keywords: oil dispersed systems, asphaltenes, flocculation inhibitors, onset point.


  1. Ahmadi, M., & Chen, Z. (2019). Challenges and future of chemical assisted heavy oil recovery processes. Advances in Colloid and Interface Science, 23, 102081.
  2. Ren, Y., Chen, Z., Du, H., Fang, L., & Zhang, X. (2017). Preparation and Evaluation of Modified Ethylene–Vinyl Acetate Copolymer as Pour Point Depressant and Flow Improver for Jianghan Crude Oil. Industrial & Engineering Chemistry Research, 56 (39), 11161–11166.
  3. Kwon, E. H., Go, K. S., Nho, N.-S., & Kim, K. H. (2018). Effect of alkyl chain length of ionic surfactants on selective removal of asphaltene from oil sand bitumen. Energy & Fuels, 32 (9), 9304–9313.
  4. Atta, A. M., Abdullah, M. M. S., Al-Lohedan, H. A., & Ezzat, A. O. (2018). Demulsification of heavy crude oil using new nonionic cardanol surfactants. Journal of Molecular Liquids, 252, 311–320.
  5. Balestrin, L. B. da S., Francisco, R. D., Bertran, C. A., Cardoso, M. B., & Loh, W. (2019). Direct Assessment of Inhibitor and Solvent Effects on the Deposition Mechanism of Asphaltenes in a Brazilian Crude Oil. Energy & Fuels, 33(6), 4748–4757.
  6. Chen, C., et al. (2012). Study of asphaltene dispersion and removal for high-asphaltene oil wells. Petroleum Sci., 9 (4), 551–557.
  7. Marcano, F., Moura, L. G., Cardoso, F. M., & Rosa, P. T. (2015). Understanding the Kinetics of Asphaltene Precipitation from Crude Oils. The University of Michigan.
  8. Al-Sahhaf, T. A., Fahim, M. A., & Elkilani, A. S. (2002). Retardation of asphaltene precipitation by addition of toluene, resins, deasphalted oil and surfactants. Fluid Phase Equilibria, 194, 1045–1057.
  9. Tertyshna, O. V., Zamikula, K. O., Polishchuk, V. V., & Sukhyi, K. M. (2022). Syntez i vyprobuvannia prysadok roslynnoho pokhodzhennia. Pytannia khimii ta khimichnoi tekhnolohii, 3, 83–91. [in Ukr.].
  10. Tertyshna, O. V., Zamikula, K. O., Sukhyy, K. M., & Toropin, K. S. (2022). Kinetics of dissolution of asphalt-resin-paraffin deposits when adding dispersing agents. Burmistrov Voprosy khimii i khimicheskoi tekhnologii, 4, 84–91.
  11. Tertyshna, O. V. (2021). Rozvytok naukovykh osnov resursozberihaiuchoi tekhnolohii pererobky nafty [Development of scientific foundations of resource-saving technology of oil processing]. Doctor of Science thesis. Dnipro. 352 p. [in Ukr.].
  12. Safieva, J. O., Likhatsky, V. V., Filatov, V. M., & Syunyaev, R. Z. (2010). Composition of asphaltene solvate shell at precipitation onset conditions and estimation of average aggregate sizes in model oils. Energy&Fuels, 24 (4), 2266–2274.