Science, Technologies, Innovations №2(26) 2023, 48-56 p

http://doi.org/10.35668/2520-6524-2023-2-06

Pivovarov O. A. — D. Sc. in Engineering, Professor, Professor of the Department of food technology, Dnipro State Agrarian and Economic University, 25, Serhiy Yefremov Str., Dnipro, 49000; +38 (097) 342-46-60; apivo@ua.fm;
ORCID: 0000-0003-0520-171X

Pavlenko A. A. — Teacher of the Department of food technology, Dnipro State Agrarian and Economic University, 25, Serhiy Yefremov Str., Dnipro, 49000; +38 (097) 240-91-24; aavsaa@ukr.net; ORCID: 0000-0002-7580-3612

INNOVATIVE APPLICATION OF ALUMINUM SILICATE MICROSPHERE (CENOSPHERE) AS AN EFFECTIVE FILLER IN COMPOSITE MATERIALS

Abstract. Aluminosilicate microspheres as industrial waste of thermal power plants as a result of the combustion of thermal coal are widely used in various industries due to the uniqueness of their physical and chemical properties. The paper considers the use of aluminosilicate microspheres in the technologies of creating composite materials based on butadiene-styrene and nitrile rubbers with increased properties of the obtained materials for abrasive wear. Changes in the typical characteristics of the obtained rubber composite materials due to the addition of aluminosilicate hollow microspheres in the amount of 1 to 8 mass percent to the rubber matrix were studied. The deformation-strength characteristics of the latest composites and the effect of aluminosilicate microspheres on the creation of tribotechnical polymer materials for general purposes are determined. It is shown that increasing the amount of aluminosilicate hollow microspheres in the range from 2 to 8 mass percent to butadiene-styrene and nitrile rubbers contributes to the stabilization of wear intensity values, which is a positive technological factor in the creation of composite materials with an innovative filler.

Keywords: aluminosilicate microspheres, butadiene-styrene, nitrile rubber, tribotechnical materials, deformation-strength characteristics, friction.

REFERENCES

  1. Haustein, E., & Quant, B. (2021). The characteristics of selected properties of the cenospheres – fraction of fly ash – by-product of coal combustion. Gospodarka Surowcami Mineralnymi – Mineral Resources Management. 27 (3), 95–111.
  2. Navid, Ranjbar, & Carsten, Kuenzel. (2017). Cenospheres: A review. Fuel, 207, 1–12. https://doi.org/10.1016/J.FUEL.2017.06.059.
  3. Yadav, V. K., Yadav, K. K., Tirth, V., Jangid, A., Gnanamoorthy, G., & Choudhary, N., et al. (2021). Advances in Methods for Recovery of Cenospheres from Fly Ash and Their Emerging Applications in Ceramics, Composites, Polymers and Environmental Cleanup. Crystals. 11 (9), 1067. https://doi.org/10.3390/cryst11091067.
  4. Todea, M., Frentiu, B., Turcu, R. F. V., Berce, P., & Simon, S. (2012). Surface structure changes on aluminosilicate microspheres at the interface with simulated body fluid. Corrosion Science. 54, 299–306. https://doi.org/10.1016/j.corsci.2011.09.032.
  5. Mukund, J. Y., Kantilal, B. R., & Sudhakar, R. N. (2012). Floating microspheres: a review. Braz. J. Pharm. Sci. 48 (1). https://doi.org/10.1590/S1984-82502012000100003.
  6. Wrona, J., Bradło, D., Czuprynski, P., & Zukowski, W. (2020). Recovery of Cenospheres and Fine Fraction from Coal Fly Ash by a Novel Dry Separation Method. Energies. 13. 3576. https://doi.org/10.3390/en13143576.
  7. Mosallam, A. S., Bayraktar, A., Elmikawi, M., Pul, S., & Adanur, S. (2013). Polymer Composites in Construction: An Overview. SOJ Mater Sci Eng.(1), 25. http://dx.doi.org/10.15226/sojmse.2014.00107.
  8. Zhai, W., Bai, L., Zhou, R., Fan, X., Kang, G., Liu, Y., Zhou, K. (2021).  Recent Progress on Wear-Resistant Materials: Designs, Properties, and Applications. Adv. Sci. 8, 2003739. https://doi.org/10.1002/advs.202003739.
  9. Khan, A., Kian, L. K., Jawaid, M., Khan, A. A. P., Alotaibi, M. M., Asiri, A. M., & Marwani, H. M. (2022). Preparation of Styrene-Butadiene Rubber (SBR) Composite Incorporated with Collagen-Functionalized Graphene Oxide for Green Tire Application. Gels. 8, 161. https://doi.org/10.3390/gels8030161.
  10.  Minari, R., Gugliotta, L., Vega, J., & Meira, G. (2006). Continuous Emulsion Styrene−Butadiene Rubber (SBR) Process: Computer Simulation Study for Increasing Production and for Reducing Transients between Steady States. Industrial & Engineering Chemistry Research. 45, 245–257. https://doi.org/10.1021/ie0504755.
  11. Magiera, A., Kuźnia, M., Jerzak, W., Ziąbka, M., Lach, R., & Handke, B. (2019). Microspheres as potential fillers in composite polymeric materials. E3S Web Conf., 108, 02009. https://doi.org/10.1051/e3sconf/201910802009.
  12. Sviderskyi, V., & Demchenko, V. (2017). Khimichnyi sklad i dyspersnist zolnykh mikrosfer [Chemical composition and dispersion of ash microspheres]. Tovary i rynky – Goods and markets, 1, 69–79. [in Ukr.].
  13. Haustein, E., & Quant, B. (2011). The characteristics of selected properties of the cenospheres – fraction of fly ash – by-product of coal combustion. Gospodarka Surowcami Mineralnymi – Mineral Resources Management. 27 (3), 95–111.
  14. Vilmin, F., Dussap, C., & Coste, N. (2006). Fast and robust method for the determination of microstructure and composition in butadiene, styrene-butadiene, and isoprene rubber by near-infrared spectroscopy. Appl Spectrosc. 60 (6), 619–30. https://doi.org/10.1366/000370206777670675.
  15. Bielinski, D., GŁa̧b, P., & Chruściel, J. (2007). Modification of styrene-butadiene rubber with polymethylsiloxanes. Polimery/Polymers. 52, 195–202. https://doi.org/10.14314/polimery.2007.195.
  16. Coveney, V. A., & Johnson, D. E. (2006). Abrasive Wear of Elastomers. Elastomers and Components. Service Life Prediction – Progress and Challenges, 113–138. https://doi.org/10.1533/9781845691134.
  17. Threadingham, D., Obrecht, W., Wieder, W., Wachholz, G. & Engehausen, R. (2011). Rubber, 3. Synthetic Rubbers, Introduction and Overview. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a23_239.pub5.