Science, Technologies, Innovations №1(21) 2022, 38-45 p

http://doi.org/10.35668/2520-6524-2022-1-06

Pysarenko T. V. — PhD in Engineering, Deputy Director of State Institution “Ukrainian Institute of Scientific and Technical Expertise and Information”, Antonovycha Str., 180, Kyiv, Ukraine, 03680; +38 (096) 376-38-14; tvpisarenko@gmail.com; ORCID: 0000-0001-9806-2872

Kvasha T. K. — Head of the Department of State Institution “Ukrainian Institute of Scientific and Technical Expertise and Information”, Antonovycha Str., 180, Kyiv, Ukraine, 03680; +38 (044) 521-00-74; ntatyana@ukr.net; kvasha@uintei.kiev.ua; ORCID: 0000-0002-1371-3531

CRITICAL TECHNOLOGIES: RESULTS OF A FORESIGHT STUDY IN UKRAINE IN 2021

Abstract. The identification and implementation of new critical technologies in the field of weapons and military equipment will create prerequisites for the further development of highly competitive technological industries, as well as ensure the development and implementation of modern models of military equipment; will modernize existing weapons and improve their tactical and technical characteristics. Therefore, the work to identify critical technologies in this area is important for Ukraine, the results of which this article is devoted to. The goal is to update the list of critical technologies in the field of armaments and military equipment in pursuance of the order of the Cabinet of Ministers of Ukraine from August 30, 2017 No 600 using foresight research in 7 thematic areas. The foresight research methodology is complex and includes 3 methods: two stages of expert surveys (scientists who made proposals; entrepreneurs who evaluated the proposals of scientists in terms of the importance and necessity for the business of the proposed technologies); scientometric and patent analysis to assess the relevance of the proposals of experts-scientists in terms of trends in world science and new technologies — 3rd stage; assessment of the proposals of expert scientists in terms of the possibilities and existing potential of Ukrainian science to carry out the proposed research — 4th stage. For each of the 4 stages presented, each proposal received 4 assessment, which were then reduced to an integral assessment. According to the integral assessment, all technologies for each thematic area were separately ranked and divided into three clusters. The best clusters were proposed as critical technologies. Assessment methods are methods of system analysis, intellectual property analytics, rank method, cluster analyse. Based on the results of the study, the Ministry of Education and Science has prepared a draft updated list of 24 critical technologies in 5 thematic areas, which was approved on February 23, 2022 by the Cabinet of Ministers of Ukraine. Subsequent work should include the results of a monitoring the implementation of approved technologies in the field of weapons and military equipment and determining the accuracy of the forecast.

Keywords: short-term forecast, military technologies, expert polls.

REFERENCES

  1. Popper, R. (2008). Foresight methodology. In The handbook of technology foresight: Concepts and practices. eds. L. Georghiou, J. Cassingena Harper, M. Keenan, I. Miles, and R. Popper, 44-88. Cheltenham, UK: Edward Elgar.
  2. Glenn, J. C., & Gordon, T. J., eds. (2009). Futures research methodology–Version 3.0 (CD-ROM). Washington, DC: The Millennium Project. Retrieved from: http://www.millennium-project.org/millennium/FRM-V3.html#toc
  3. Vanatta, N., & Johnson, B. D. (2019). Threatcasting: a framework and process to model future operating environments. Journal of Defense Modeling and Simulation: Applications, Methodology, Technology. Vol. 16 (1), 79–88. Retrieved from: https://journals.sagepub.com/doi/pdf/10.1177/1548512918806385
  4. Javier, J. (2017). Political and social trends in the future of global security. A meta-study on official perspectives in Europe and North America. European Journal of Futures Research, 5, 11. https://doi.org/10.1007/s40309017-0120-x
  5. Ogilvy, J. (2015). Scenario planning and strategic forecasting. Stratfor. Retrieved from: https://www.forbes.com/sites/stratfor/2015/01/08/scenario-planning-and-strategic-forecasting/?sh=7f5bdbd411a3
  6. Neumann, I. B., & Overland, E. F. (2004). International relations and policy planning: the method of Perspectivist scenario building. International Studies Perspectives, 5, 258-277.  https://doi.org/10.1111/j.1528-3577.2004.00173.x.
  7. Keskinen, A. (2010). How to Grasp Emerging Futures of Information Wars? Proceedings of the 9th European Conference on Information Warfare and Security, 128-136.
  8. Nemeth, B; Dew, N., & Augier, M. (2018). Understanding some pitfalls in the strategic foresight processes: The case of the Hungarian Ministry of Defense.  FUTURES, 101, 92-102. https://doi.org/10.1016/j.futures.2018.06.014
  9. Fye, S. R., Charbonneau, S. M., Hay, J. W., & Mullins, C. A. (2013). An examination of factors affecting accuracy in technology forecasts. Technological Forecasting and Social Change, 80(6), 1222-1231. Retrieved from: https://www.nhu.edu.tw/~lbhung/10401TMpapers/An%20examination%20of%20factors%20affecting%20accuracy.pdf. https://doi.org/10.1016/j.techfore.2012.10.026
  10. Albright, R. E. (2002). What can past technology forecasts tell us about the future? Technological Forecasting and Social Change, 69 (5), 443-464. https://doi.org/10.1016/s0040-1625(02)00186-5
  11. Ascher, W. (1979). Problems of forecasting and technology assessment. Technological Forecasting and Social Change, 13, 149-156. https://doi.org/10.1016/0040-1625(79)90109-4
  12. Firat, A. K., Woon, W. L., & Madnick, S. (2008). Technological forecasting–a review. Cambridge, MA: Composite Information Systems Laboratory (CISL), Massachusetts Institute of Technology.
  13. Kott, A., & Perconti, P. (2018). Long-term forecasts of military technologies for a 20-30 year horizon: An empirical assessment of accuracy. Technological Forecasting and Social Change, 137 , 272-279. https://doi.org/10.1016/j.techfore.2018.08.001
  14. Zhang, Ke, Chen Zhiguang; & ZhaoYuyin (2013). Dome protecting technologies for overseas high-velocity guided missiles. Infrared and Laser Engineering. 42 (1), 154-158. Retrieved from: http://www.irla.cn/en/article/id/834.
  15. Miroslav Kratky, & Jan Farlik (2018). Countering UAVs – the Mover of Research in Military Technology. Defence Science Journal, 68 (5), 460-466. https://doi.org/10.14429/dsj.68.12442
  16. Jordan, J.  (2021). The future of unmanned combat aerial vehicles: An analysis using the Three Horizons framework. FUTURES, 134. 1-11. https://doi.org/10.1016/j.futures.2021.102848
  17. Acosta, M., Coronado D.,  Marin R., & Prats P. (2013). Factors affecting the diffusion of patented military technology in the field of  weapons  and  ammunition. SCIENTOMETRICS,  94 (1),  1-22. https://doi.org/10.1007/s11192-012-0857-8
  18. Kim, D. H.; Lee, B. K.; & Sohn, S. Y. (2016). Quantifying technology-industry spillover effects based on patent  citation network  analysis  of unmanned aerial vehicle (UAV). TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 105, 140-157. https://doi.org/10.1016/j.techfore.2016.01.025
  19. Cho, Yu-Seup (2017). The Representative Technology Field Analysis of Domestic Defense Companies in Communication- electronics based on Patent Information Data. Journal of Korea Academia-Industrial cooperation Society, 18 (4), 446-458.
  20. Kim, Jinki (2015). A Study on Technological Performance of Japanese Defense Industry: Focused on Patents Application Activities of Japanese Defense Companies. National Strategy, 21 (4), 29-50. https://doi.org/10.35390/sejong.21.4.201512.002
  21. Kvasha, Т. К., & Androshchuk, G. О. (2021). Patentnyi landshaft yak instrument analityky intelektualnoi vlasnosti (na prykladi analizu sfery viiskovykh tekhnolohii) [Patent landscape as a tool for intellectual property analysis (on the example of analysis of military technology)]. Pytannia intelektualnoi vlasnosti [Issues of intellectual property], Ed. G. О. Androshchuk. Research Institute of Intellectual Property of National Academy of Legal Sciences of Ukraine, Interservice. 18, 94-105. [in Ukr.].
  22. Androshchuk, G. О., & Kvasha, Т. К. (2019). Patentnyi landshaft yak instrument prohnozuvannia svitovykh tekhnolohichnykh trendiv: sfera  ozbroiennia ta viiskovoi tekhniky [Patent landscape as a tool for forecasting world technological trends: arms and military equipment]. Nauka, tekhnolohii, innovatsii [Science, Technologies, Innovations]. 4 (12). 28-40. https://doi.org/10.35668/2520-6524-2019-4-04 [in Ukr.].
  23. Kvasha, Т. К. (2018). Prohnoz napriamiv tekhnolohichnoho rozvytku u sferi ozbroiennia ta viiskovoi tekhniky [Forecast of technological development directions in the field of armaments and military equipment]. Informatsiia, analiz, prohnoz – stratehichni vazheli efektyvnoho derzhavnoho upravlinnia [Information, analysis, forecast – strategic levers of effective public administration]: Proceedings of the XI International Scientific and Practical Conference. Kyiv, 113-126. [in Ukr.].
  24. Pisarenko, Т. V., Kvasha, T. K., & Gavris, T. V. et al.; Pisarenko Т. V. (Ed.) (2021). Analiz svitovykh tekhnolohichnykh trendiv u viiskovii sferi [Analysis of world technological trends in the military sphere]. Kyiv, 110 p. [in Ukr.].
  25. Kvasha, T. K. (2019). Formuvannia propozytsii z onovlennia krytychnykh tekhnolohii u sferi ozbroiennia ta viiskovoi tekhniky [Formation of proposals for the renewal of critical technologies in the field of armaments and military equipment]. Informatsiia, analiz, prohnoz – stratehichni vazheli efektyvnoho derzhavnoho upravlinnia [Information, analysis, forecast – strategic levers of effective public administration]: Proceedings of the XII International Scientific and Practical Conference. 128-133. [in Ukr.].
  26. Kvasha, T. K. (2019). Svitovi naukovi ta tekhnolohichni trendy u sferi zabezpechennia natsionalnoi bezpeky: naukova dopovid [World scientific and technological trends in the field of national security: a scientific report]. Kyiv, 99 p. DOI: 10.35668/978-966-479-109-7. [in Ukr.].
  27. Pisarenko, Т. V., & Kvasha, T. K. (2020). Hlobalni tekhnolohichni trendy u sferi ozbroiennia ta viiskovoi tekhniky [Global technological trends in the field of armaments and military equipment]. Kyiv, 88 p. DOI: 10.35668/978-966-479-117-2. [in Ukr.].
  28. Koval, V. V., Korshets, O. A., Kotlyar, S. O., & Kuznetsova, O. V. (2011). Do pytannia zastosuvannia metodiv naukovo-tekhnichnoho prohnozu rozvytku ozbroiennia i viiskovoi tekhniky na osnovi analizu patentnoi ta naukovo-tekhnichnoi informatsii [On the application of scientific and technical forecasting methods of the armaments and military equipment development based on the analysis of patent and scientific and technical information]. Zbirnyk naukovykh prats Kharkivskoho natsionalnoho universytetu Povitrianykh Syl [Scientific works of Kharkiv National University of the Air Force].  2(28), 34-36. [in Ukr.].
  29. Bugera, M. G. (2016). Metod morfolohichnoho analizu patentnoi informatsii dlia pobudovy statystychnoi modeli prohnozu rozvytku zakhysnykh prystroiv dynamichnoho typu [Method of morphological analysis of patent information for statistical model forecast construction of development of protective devices of dynamic type ]. Zbirnyk naukovykh prats Kharkivskoho natsionalnoho universytetu Povitrianykh Syl [Scientific works of Kharkiv National University of the Air Force]. 4, 75-79. Retrieved from: http://nbuv.gov.ua/UJRN/ZKhUPS_2016_4_16 [in Ukr.].
  30. Pro utvorennia robochoi hrupy z aktualizatsii pereliku krytychnykh tekhnolohii [About formation of working group on actualization of the list of critical technologies]. Order from 08.07.2021 No. 784. Retrieved from: Про утворення робочої групи з актуалізації переліку критичних технологій | Міністерство освіти і науки України (mon.gov.ua) [in Ukr.].