Science, Technologies, Innovations №2(14) 2020

http://doi.org/10.35668/2520-6524-2020-2-07

Reva O. M. — D. Sc. in Engineering, Professor, Principal Researcher at Ukrainian Institute of Scientific and Technical Expertise and Information, Antonovich Str., building 180, 02000; Kyiv, Ukraine; +38 (044) 521-00-10; ran54@meta.ua; ORCID: 0000-0002-5954-290X

Kamyshуn V. V. — D. Sc. in Pedagogy, Senior Researcher, Acting Director of Ukrainian Institute of Scientific and Technical Expertise and Information; Antonovich Str., building 180, 02000; Kyiv, Ukraine; +38 (044) 521-00-10; kvv@ukrintei.ua; ORCID: 0000-0002-8832-9470

Borsuk S. P. — D. Sc. in Engineering, Associate Professor, Postdoctoral researcher at Wenzhou University, Ocean Science and Technology Innovation Park, No. 19 Binhai 3rd Road, Yongxing Street, Longwan District, Wenzhou, Zhejiang, China. 325024. greyone.ff@gmail.com; ORCID: 0000-0002-7034-7857

Nevynitsyn A. V. — PhD in Engineering, Associate Professor, Dean of the Faculty of Air Traffic Services Flight Academy of the National Aviation University; Dobrovolskoho str., 1, Kropyvnytskyi, Ukraine, 25005; nevatse@ukr.net; ORCID: 0000-0001-7000-4929

Shulgin V. A. — PhD in Engineering, Assistant Professor, Dean of the Flight Operation Faculty, Flight Academy of the National Aviation University; Dobrovolskoho str., 1, Kropyvnytskyi, Ukraine, 25005; VAShulgin@ukr.net; ORCID: 0000-0001-7938-8383

THE CLASSICAL CRITERIA APPLICATION FOR THE DECISION-MAKING UNCERTAINTY RISK DETERMINATION OF THE PREFERENCES SYSTEM BY THE AIR TRAFFIC CONTROLLERS ON THE CHARACTERISTIC ERRORS HAZARDS

Abstract. Given the influence of the human factor on decision-making processes by aviation operators of the “leading edge”, therefore, — of the flight safety, individual and group preference systems as formalized representations of air traffic controllers about a number of spectrum ordered by danger have been investigated from n=21 of characteristic errors. That has a pronounced positive proactive character. Explicating their opinions, the air traffic controllers simultaneously form discriminating, memorizing skills, therefore, — avoidance of mistakes in a professional activity: the subjects made one third fewer errors in comparison with other air traffic controllers in the process of simulator training. Group preference systems allow identifying the features of the functioning of individual socie­ties — dispatch shifts, possible group deformations, as well as the impact on their members of the presentation features of the performing technological procedures specifics by instructors. m=37 individual preference systems of the air traffic controllers, which were involved in research, were built by pairwise comparison of the danger of errors and the application of a differential method of distributing the indicator of their total danger. That contributed to conducting of 420 pairwise error hazard comparisons. The implementation of a multi-step procedure for identifying and screening out 10 marginal opinions has led to a statistically consistent group system of preferences: Kendall’s concordance coefficient equals is W=0,700 and it became statistically significant at a high level of significance of  a = 1 %. The decision matrix was formed from mА=27 individual preference systems of the air traffic controllers, which, by the definition, is a “cost matrix” and for the solution of which a methodology for the correct application of the classical decision criteria by Wald, Savage, Bayes-Laplace, Hurwitz has been implemented. It revealed the identity of the group systems of preferences obtained by Wald and Savage criterion, as well as the Bayes-Laplace criterion and such a strategy of group decisions as summation and averaging of ranks. The empirical preferences are generally the same: Spearman’s rank correlation coefficients are unusually high (RB–L–W/S=0,8922,  RB–L–HW=0,9263, RW/S–HW=0,9477) and statistically gullible at a high level of significance for human factor studies . The following values of the normative indicator of the not distinguishing dangers of error risk in the group preference systems are obtained: R*BL=0 ,  R*HW=0,19·10-2, R*W/S=5,58·10-2. The value of this indicator for the group is R*g=0,52·10-2.

Keywords: flight safety, human factor, individual and group preference systems, typical errors of air traffic controllers, classic decision-making criteria, a measure of the risk of not distinguishing the dangers of error.

REFERENCE

  1. Fundamental Human Factors Concept (1989). Human Factors Didest N0 1. Cir. ICAO 216 —AN / 131. Montreal, Canada.
  2. Davydenko, M. F., &  Reva, A. N. (1995). Poslednyi rubezh oborony (Chelovecheskyi faktor: fundamentalnye kontseptsyy YKAO) [The Last Frontier of Defense (Human Factor: ICAO Fundamental Concepts)]. Avyakompanyia [Airlines]. Р. 23–28.
  3. Reva, A. N., Tumyhev, K. M., & Bekmukhambetov, A. A. (2006). Chelovecheskyi faktor y bezopasnost poletov: (Proaktyvnoe yssledovanye vlyianyia) [Human factor and safety of flights: (Proactive influence study)]. Almaty. 242 p.
  4. Human Factors Guidelines for Safety Audits Manual : Doc. ICAO. Doc 9806 AN/763. Montreal, 2002. 138 p.
  5. Materialy mezhdunarodnogo seminara po sokrashheniju kolichestva aviacionnyh proisshestvij pri zahode na posadku i posadke (ALAR Tool Kit — Rukovodstvo ALAR) [Proceedings of the International Landing and Landing Accident Reduction Workshop]. (2003). Moscow.
  6. Reva, A. N., Borsuk, S. P., & Shulhin, V. A. (2018). Suchasni problemy liudskoho chynnyka v aviatsii [Modern Problems of the Human Factor in Aviation]. Кyiv. 124 p.
  7. Prognoz razvitija vozdushnogo transporta do 2025 goda : Cir. ICAO 313 — AT / 134 [Forecast of air transport development until 2025: Cir. ICAO 313 – AT / 134]. (2007). Monreal.
  8. Global’nyj plan obespechenij bezopasnosti poletov (2017-2019): Doc. ICAO 10104 [Global Safety Plan (2017–2019): Doc. ICAO 10104] (2016). Monreal.
  9. Zade L. (1976). Ponjatie lingvisticheskoj peremennoj i ego primenenie k prinjatiju priblizhennyh reshenij [The concept of linguistic variable and its application to the adoption of approximate solutions]. Мoscow. 165 p.
  10. Gubinskij A. I. (1982). Nadezhnost’ i kachestvo funkcionirovanija jergaticheskih sistem [Reliability and quality of functioning of ergatic systems]. St.Peterburg. 270 p.
  11. Accident prevention manual (1984) : Doc. ІSAO 9422-AN/923. — Montreal.
  12. Kontrol faktorov uhrozy y oshybok (KUO) pry upravlenyy vozdushnym dvyzhenyem [] (2008). Cir. ICAO 314-AN/178. Montreal.
  13. Reva, A. N., Mirzoev, B. M., Nasirov, Sh. Sh., & Ned­baj, S. V. (2012). Jempiricheskie modeli ocenki riskaneopredelennosti gruppovyh sistem predpochtenij aviadispetcherov [Empirical models for assessing the risk-uncertainty of group systems of preferences of air traffic controllers]. Elmi məcmuələr : Jurnal Milli Aviasiya Akademiyasinin, Vol. 14. 3. P. 46–60.
  14. Reva, A. N., Nasіrov, Sh. Sh., & Mirzoev, B. M. (2018).
    Jeffektivnost’ metodov opredelenija gruppovyh sistem predpochtenij dispetcherov na opasnosti harakternyh oshibok, sovershaemyh v processe upravlenija vozdushnym dvizheniem [The efficiency of methods for determining group systems of dispatchers’ preferences on the danger of characteristic errors made in the process of air traffic control]. Aviatsiino-kosmichna tekhnika i tekhnolohiia [Aerospace engineering and technology].  6. P. 93–103.
  15. Reva, O. M., Kamyshyn, V. V., Nevynitsyn, A. M., & Shulhin, V. A. (2019). Dyferentsialnyi metod vstanovlennia porivnialnoi nebezpeky pomylok aviadyspetcheriv [Differential method of establishing the comparative danger of errors of aviadispetchers]. Nauka, tekhnolohii, innovatsii [Science, technologies, innovations] 3. P. 70–82. https://doi.org/10.35668/2520-6524-2019-3-08
  16. Utkin, V. F. & Krjuchkov, Ju. V. (in Ed.) (1988). Nadezhnost’ i jeffektivnost’ v tehnike [Reliability and efficiency in technology]. Moscow. Vol. 3. 328 p.
  17. Raichev, C. H. (2008). Vplyv pomylok aviadyspetchera na riven bezpeky porvitrianoho rukhu Bolharii [Influence of air traffic controller errors on the level of air traffic safety in Bulgaria]. Kyiv: NAU.
  18. Reva, O. M., Seleznov, H. M., & Kolotusha, V. P. (1997). Liudskyi faktor: pomylky aviadyspetcheriv ta bezpeka polotiv [Human factor: errors of air traffic controllers and flight safety]. Problemy aeronavihatsii [Problems of aeronautics]. 2. P. 60–66.
  19. Bljumberg, V. A., & Glushhenko V. F. (1982). Kakoe reshenie luchshe? Metod rasstanovki prioritetov [Which solution is better? Method of setting priorities]. St.Peterburg. 160 p.
  20. Nasirov, Sh. Sh. (2012). Bahatokrokova protsedura vyiavlennia statystychnouzghodzhenoi systemy perevah aviadyspetcheriv na mnozhyni kharakternykh pomylok yikh diialnosti [Multistep procedure for identifying a statistically consistent system of preferences of air traffic controllers on a set of characteristic errors of their activities]. Komunalne hospodarstvo mist [Municipal Economy]. Vol. 105. P. 461–475.
  21. Reva, O. M., Kamyshyn V. V., & Shasirov, Sh. Sh. (2012). Mediana Kemeni yak hrupova systema perevah aviadyspetcheriv na mnozhyni kharakternykh pomylok [Mediana Kemeni as a group systemtheme of preferences of air traffic controllers on a set of characteristic errors]. Aviatsiino-kosmichna tekhnika i tekhnolohiia [Aviation and space technology]. 4. P. 106–115.
  22. Reva, O. M., Kamyshyn, V. V., Nevynitsyn, A. M., & Nedbai, S. V. (2019). Preventyvne otsiniuvannia kompleksnoi znachushchosti kharakternykh pomylok [Preventive assessment of complex significance of characteristic errors]. Aviatsiino-kosmichna tekhnika i tekhnolohiia [Aviation and space technology]. 5. P. 72–81.
  23. Reva, O. M., Kamyshyn, V. V., Nevynitsyn A. M., & Radetska, S. V. (2019). Bahatokrokova protsedura pryiniattia rishen shchodo uzghodzhenosti hrupo­vykh system perevah aviadyspetcheriv [Multistep decisionmaking procedure regarding the consistency of group systems of preferences of air traffic controllers]. Tekhnichne rehuliuvannia, metrolohiia, informatsiini ta transportni tekhnolohii [Technical regulation, metrology, information and transport. technologies]. Odesa. P. 147–152.
  24. Safety Management Manual (SMM): DOC ICAO 9859 — AN/474. (2018). Montreal.
  25. Mushik, Je., & Mjuller, P. (1990). Metody prinjatija tehnicheskih reshenij [Methods of technical solutions]. Moscow. 208 p.
  26. Taha, H. A. (2005). Vvedenie v issledovanie operacij [Operations Research: An Introduction]. Moscow. 912 p.
  27. Goodwin, P., & Wright, G. (2014). Decision Analysis for Management Judgment. 5th ed. Chichester: Wiley. 496 p.
  28. Kozeleckij, Ju. (1979). Psihologicheskaja teorija reshenij [Psychological theory of decisions]. Moscow. 504 p.
  29. Reva, O. M., Kamyshyn, V. V., Shulhin, V. A., & Nedbai, S. V. (2010). Nechitki modeli erhonomichnoi kvalimetrii tochnosti pilotuvannia [Fuzzy models of ergonomic qualimetry of piloting accuracy]. Rivne. 106 p.
  30. Reva, A. N., Kamyshin, V. V., & Alekseev, D. S. (2012).  Teoreticheskie modeli gruppovyh sistem predpochtenij aviadispetcherov, bazirujushhiesja na klassicheskih kriterijah prinjatija reshenij [Theoretical models of group systems of preferences of air traffic controllers based on classical decisionmaking criteria]. Elmi məcmuələr : Juornal Milli Aviasiya Akademiyasinin. 3. P. 37–45.
  31. Kharchenko, V. P., & Alieksieiev O. M. (2018). Systema upravlinnia ryzykamy aviatsiinoi diialnosti [System of risk management of aviation activity]. Kyiv. 300 p.
  32. Reva O. M., Borsuk S. P., Kamyshyn V. V., Shulhin V. A., Parkhomenko V. D., Lypchnskyi V. O. (2019). Sys­temno-informatsiina metodolohiia proaktyvnoi kvalimetrii vplyvu liudskoho chynnyka na pryiniattia rishen v aeronavihatsiinykh systemakh [System-information methodology of proactive qualimetry of human factor influence on decisionmaking in aeronautical systems]. Kyiv.166 p.
  33. Kamyshyn, V. V., Reva, O. M., Makarenko, L. M., & Medvedenko, O. M. (2012). Protsedura fazyfikatsii / defazyfikatsii baliv shkal otsiniuvannia [Fascification / defasification of scoring scales]. Elektronika ta systemy upravlinnia [Electronics and control systems]. Kyiv. 3. P. 53–62.
  34. Reva, O. Borsuk, S., & Kharchenko, V. (2015). Multiplication of Air Accidents Frequency and Hazard Desirability Coefficients for ICAO Safety Risk Tolerability Matrix Solution. Logistics and Transport. Wroclaw. 1. P. 63–69.
  35. Mjuller, P., Nojman P., & Shtorm R. (1982). Tablicy po matematicheskoj statistike [ables on mathematical statistics]. Moscow. 278 p.
  36. Samohvalov, Ju. Ja., Naumenko, E. M. (2007). Jekspertnoe ocenivanie [Expert assessment]. Kyiv: 362 p.