Science, Technologies, Innovations №4(28) 2023, 62-77 р

http://doi.org/10.35668/2520-6524-2023-4-06

Reva O. M. — D. Sc. in Engineering, Professor, Head of the electronic government department in the management and administration division of National Aviation University, 1, Lubomir Guzar Ave, Kyiv, Ukraine, 03058; +38 (067) 238-31-77; ran54@meta.ua; ORCID: 0000-0002-5954-290X

Borsuk S. P. — D. Sc. in Engineering, Associate professor, Head researcher, Ukrainian Institute of Scientific and Technical Expertise and Information, 180, Antonovycha Str., Kyiv, Ukraine, 03150; greyone.ff@gmail.com; ORCID: 0000-0002-7034-7857

Kamyshyn V. V. — D. Sc. in Pedagogy, Corresponding Member of the NAES of Ukraine, Director of Ukrainian Institute of Scientific and Technical Expertise and Information, 180, Antonovycha Str., Kyiv, Ukraine, 03150; +38 (044) 521-00-10; kvv@ukrintei.ua; ORCID: 0000-0002-8832-9470

Sahanovska L. A. — Senior Lecturer of the Department of Physical and Mathematical Disciplines and Information Technologies in Aviation Systems of the Flight Academy of the National Aviation University, 1, Stepan Choban Str., Kropyvnytskyi, Kirovohrad region, Ukraine, 25005; lora-sag@ukr.net; ORCID: 0000-0002-2560-4383

Yarotskyi S. V. — Head of Department in the Management and Administration Division of National Aviation University, 1, Lubomir Guzar Ave, Kyiv, Ukraine, 03058; +38 (067) 238-31-77; stas_gas@ua.fm; ORCID: 0000-0003-3934-4647

CONSTRUCTION OF GROUP SYSTEMS OF EXPERT ADVANTAGES USING THE a-TECHNOLOGY OF APPLYING CLASSICAL DECISION-MAKING CRITERIA

Abstract. Decision making is a more important system-forming characteristic of expert activity. Therefore, studying the specifics of the relevant choices and their optimization, especially from the perspective of the influence of the human factor, is an urgent scientific and practical task. Among the components of this influence, which simultaneously determine the attitude of specialists to the indicators and characteristics of the objects of examination, in particular the features of investment attractiveness, systems of advantages are identified, by which we mean an ordered series of these features: from the most significant, acceptable, weighty, etc. — to less significant.
The qualimetry of the significance of the features of the investment attractiveness of objects of examination in the ordering scale is linear, therefore it makes the corresponding measurements “rough” and can even provoke statistical errors of the І-ІІ kind when moving from individual systems of preferences to group ones.
The research involved m = 90 specialists who are constantly involved by SSI “UkrISTEI” in conducting various examinations and who, using our methodology, built individual systems of advantages on a spectrum of n = 18
characteristic features of the investment attractiveness of the objects of examination. Using a multi-step technology for identifying and filtering out marginal thoughts, as well as eliminating “survivor bias”, four subgroups were identified from the original sample, mC = 30 people, mH = 12 people, mM = 11 people, mT = 6 people, with consistency group opinions satisfies the range of system-information consistency criteria we introduced at a high level of significance α = 1 %. It is substantiated that the mC subgroup is the basic.
A decision matrix has been constructed, where the ranks of investment attractiveness features are defuzzified by the corresponding normalized weight coefficients determined by the method of prioritization. To solve this matrix, classical decision-making criteria (Wald, Savage, Bayes-Laplace, Hurwitz) were applied and group systems of advantages were obtained, characterized by the features of these criteria. A high statistically probable coincidence of the advantages of group systems obtained by this method has been established and ways for further development of α-technology have been outlined.

Keywords: individual and group systems of advantages, the significance of the characteristic features of the investment attractiveness of objects of examination, normalized weighting coefficients, decision matrix, classical decision-making criteria.

REFERENCES

  1. Borisov, A. N., Alekseev, A. V., & Merkureva, G. V. et al. (1989). Obrabotka nechetkoy informatsii v sistemakh prinyatiya resheniy [Processing of fuzzy information in decision-making systems]. Moscow, 304 p. [in Russ.].
  2. Novosad, V. P., Seliverstov, R. H., & Artym, I. I. (Compiled). (2009). Kilkisni metody ekspertnoho otsiniuvannia [Quantitative methods of expert assessment]. Kyiv, 36 p. [in Ukr.].
  3. Kamyshyn, V. V., & Huliaev, K. D. (2011). Systemolohiia nevyznachenosti liudskoho chynnyku u navchalno-vykhovnomu protsesi [Systemology of the uncertainty of the human factor in the educational process]. Modeliuvannia osobystisno-rozvyvalnoho seredovyshcha obdarovanoi dytyny [Modeling the personal and developmental environment of a gifted child]. Kyiv, P. 190–206. [in Ukr.].
  4. Tsyhanok, V. V., Kachanov, P. T., Andriichuk, O. V., & Homeniuk, H. A. (2012). Eksperymentalnyi analiz tekhnolohii ekspertnoho otsiniuvannia [Experimental analysis of expert evaluation technology]. Reiestratsiia, zberihannia i obrobka danykh [Registration, storage and processing of data]. 14 (1), 91–100. [in Ukr.].
  5. Reva, O. M., Borsuk, S. P., Zasanska, S. V., & Yarotskyi, S. V. (2021). Obgruntuvannia napriamiv vdoskonalennia ekspertnykh tekhnolohii v doslidzhenniakh liudskoho chynnyka [Justification of directions for improvement of expert technologies in human factor research]. Suchasni informatsiini ta innovatsiini tekhnolohii na transporti (MINNT 2021) [Modern information and innovative technologies in transport (MINNT – 2021)]. Kherson, P. 49–54. [in Ukr.].
  6. Beshelev, S. D., & Gurvich, F. G. (1980). Matematiko-statisticheskie metody ekspertnykh otsenok [Mathematical and statistical methods of expert assessments]. Moscow, 263 p. [in Russ.].
  7. Utkin, V. F., & Kryuchkov, Y. V. (Eds.). (1988). Nadezhnost i effektivnost v tekhnike [Reliability and efficiency in technology]. Vol. 3. Moscow, 328 p. [in Russ.].
  8. Vapakin, Ye. N., Zheludov, V. A., Bgantsov, V. N., & Ibneev, S. S. (1988). Prinyatie resheniy na osnove ekspertnogo otsenivaniya [Decision making based on expert assessment]. Leningrad, 88 p. [in Russ.].
  9. Peregudov, F. I., & Tarasenko, F. P. (1989). Vvedenie v sistemnyj analiz [Introduction to system analysis]. Moscow, 367 p. [in Russ.].
  10. Kozeleckij, Y., Biryukov, B. V. (Eds.), Minc, G. E., Porus, V. N. (Trans.) (1979). Psihologicheskaya teoriya reshenij [Psychological decision theory]. Moscow, 504 p. [in Russ.].
  11. Kotik, M. A. (1989. Psikhologiya i bezopasnost [Psychology and safety]. Tallin, 408 p. [in Russ.].
  12. Zaniuk, S. S. (2002). Psykholohiia motyvatsii [Psychology of motivation]. Kyiv, 304 p. [in Ukr.].
  13. Khekkhauzen, Kh. (2003). Motivatsiya i deyatelnost [Motivation and activity]. St. Peterbug, 860 p. [in Russ.].
  14. Borisov, A. N., Alekseev, A. V., Vilyums, E. R., Slyadz, N. N., & Fomin, S. A. (2997). Intellektualnye sistemy prinyatiya proektnykh resheniy [Intelligent systems for making design decisions]. Riga, 317 p. [in Russ.].
  15. Saymon, G. (2000). Teoriya prinyatiya resheniy v ekonomicheskoy teorii i nauke o povedenii [Decision theory in economics and behavioral science]. Vekhi ekonomicheskoy mysli [Milestones of economic thought]. Vol. 2. St. Peterburg, P. 54–72. [in Russ.].
  16. Gerasimov, B. M., Grabovskiy, G. G., & Ryumshin, N. A. (2002). Nechetkie mnozhestva v zadachakh proektirovaniya, upravleniya i obrabotki informatsii [Fuzzy sets in problems of design, management and information processing]. Kyiv, 140 p. [in Russ.].
  17. Voloshyn, O. F., & Mashchenko, S. O. (2010). Modeli ta metody pryiniattia rishen [Decision-making models and methods]. Kyiv, 336 p. [in Ukr.].
  18. Larichev, O. I. (2000). Teoriya i metody prinyatiya resheniy, a takzhe Khronika sobytiy v Volshebnykh Stranakh [Theory and methods of decision making, as well as Chronicle of events in Magical Lands]. Moscow, 296 p. [in Russ.].
  19. Zgurovskiy, M. Z., & Zaychenko, Yu. P. (2011). Modeli i metody prinyatiya resheniy v nechetkikh usloviyakh [Models and methods of decision making in fuzzy conditions]. Kiev, 275 p. [in Russ.].
  20. Orlov, A. I. (2011). Organizatsionno-ekonomicheskoe modelirovanie [Organizational and economic modeling]. Part 2. Moscow, 486 p. [in Russ.].
  21. Kirillov, V. I. (2012). Kvalimetriya i sistemnyy analiz [Qualimetry and system analysis]. Minsk; Moscow, 440 p. [in Russ.].
  22. Khemmond, Dzh., Kini, R., & Rayffa, G. (2018). Pravilnyy vybor. prakticheskoe rukovodstvo po prinyatiyu vzveshennykh resheniy [Right choice. a practical guide to making informed decisions]. Moscow, 240 p. [in Russ.].
  23. Iaroshchuk, L. D. (Compiler). (2022). Ekspertni metody v avtomatyzovanykh systemakh keruvannia: Formuvannia ta napriamy vykorystannia ekspertnykh znan [Expert methods in automated control systems: Formation and directions of use of expert knowledge]. Kyiv, 43 p. [in Ukr.].
  24. Zhukovskiy, V. I., & Salukvadze, M. Ye. (2023). Otsenka riskov i mnogoshagovye pozitsionnye konflikty [Risk assessment and multi-step positional conflicts]. Moscow, 305 p. [in Russ.].
  25. Kamyshyn, V. V., Reva, O. M., Makarenko, L. M., & Medvedenko, O. M. (2012). Protsedura fazyfikatsii / defazyfikatsii baliv shkal otsiniuvannia [The procedure of fuzzification / defuzzification of scores of rating scales]. Elektronika ta systemy upravlinnia [Electronics and control systems]. 3, 53–62. [in Ukr.].
  26. Reva, O. M., Borsuk, S. P., Zasanska, S. V., & Yarotskyi, S. V. (2021). Aprobatsiia α-metodu porivniannia system perevah (na prykladi porivniannia system perevah aviadyspetcheriv na nebezpekakh kharakternykh pomylok) [Approbation of the α-method of comparing advantage systems (on the example of comparing the advantage systems of air traffic controllers on the dangers of characteristic errors)]. Intelektualni systemy pryiniattia rishen i problemy obchysliuvalnoho intelektu [Intelligent decision-making systems and problems of computational intelligence]. Kherson, P. 63–64. [in Ukr.].
  27. Reva, O., Kamyshyn, V., Borsuk, S., & Nevynitsyn, A.; Senjyu, T., Mahalle, P.N., Perumal, T., Joshi, A. (Eds.) (2022). α-Method of Air Traffic Controllers’ Preference System Specification Over Typical Mistakes Severities. ICT with Intelligent Applications. Smart Innovation, Systems and Technologies. 248 p. Springer, Singapore. https://doi.org/10.1007/978-981-16-4177-0_68
  28. Reva, O. M., Kamyshyn, V. V., Borsuk, S. P., Yarotskyi, S. V., & Sahanovska, L. A. (2023). Zastosuvannia α-tekhnolohii dlia utochnennia uzghodzhenykh system perevah ekspertiv [Application of α-technology to clarify agreed systems of experts advantages]. Nauka, tekhnolohii, innovatsii [Science, technology, innovation]. 3 (27), 30–47. https://doi.org/10.35668/2520-6524-2023-3-04 [in Ukr.].
  29. Krymskiy, S. B. (1974). Nauchnoe znanie i ego transformatsiya [Scientific knowledge and its transformation]. Kiev, 207 p. [in Russ.].
  30. Dobronravova, I. S. (1990). Synerhetyka: stanovlennia neliniinoho myslennia [Synergetics: the formation of non-linear thinking]. Kyiv, 152 p. [in Ukr.].
  31. Khaken, G. (2001). Printsipy raboty golovnogo mozga: Sinergeticheskiy podkhod k aktivnosti mozga, povedeniyu i kognitivnoy deyatelnosti [Brain Principles: A Synergistic Approach to Brain Activity, Behavior, and Cognition]. Moscow, 353 p. [in Russ.].
  32. Koptsik, V. A. (Ed.). (2002). Sinergeticheskaya paradigma. Nelineynoe myshlenie v nauke i iskusstve [Synergetic paradigm. Nonlinear thinking in science and art]. Moscow, 495 p. [in Russ.].
  33. Kremen, V. H., & Ilin, V. V. (2012). Synerhetyka v osviti: kontekst liudynotsentryzmu [Synergetics in education: the context of human-centeredness]. Kyiv, 368 p. [in Ukr.].
  34. Naumkina, O. A. (2015). Neliniine myslennia v suchasnomu shvydkoplynnomu sviti [Non-linear thinking in todays fast-paced world]. Filosofiia nauky: tradytsii ta innovatsii [Philosophy of science: traditions and innovations]. 2 (12), 13–18. [in Ukr.].
  35. Reva, O. M.,  Kamyshyn, V. V., Radetska, S. V., Malynovshevska, A. V., Burdelna, Ye. A., & Lypchanska, L. M. (2019). Metody i modeli kvalimetrii synerhetychnoho efektu u dydaktytsi [Methods and models of the quality measurement of the synergistic effect in didactics]. Kyiv, 235 p. [in Ukr.].
  36. Iarotskyi, S. V. (2021). Pilotna otsinka stavlennia ekspertiv do znachushchosti kharakternykh rys innovatsiinoi pryvablyvosti obiektiv intelektualnoi vlasnosti [Pilot assessment of the attitude of experts to the significance of the characteristic features of the innovative attractiveness of intellectual property objects]. Aviatsiino-kosmichna tekhnika ta tekhnolohiia [Aerospace engineering and technology]. 4, 112–121. https://doi.org/10.32620/aktt.2021.4sup2.15 [in Ukr.].
  37. Samokhvalov, Yu. Ya., & Naumenko, Ye. M. (2007). Ekspertnoe otsenivanie: Metodicheskiy aspekt [Expert assessment: methodological aspect]. Kyiv, 362 p. [in Russ.].
  38. Blyumberg, V. A., & Glushchenko, V. F. (1982). Kakoe reshenie luchshe? Metod rasstanovki prioritetov [What is the best solution? Prioritization Method]. Leningrad, 160 p. [in Russ.].
  39. Reva, O., & Kamyshyn, V. (2022). Systemno-informatsiine obgruntuvannia kryteriiv uzghodzhenosti system perevah uchasnykiv osvitno-vykhovnoho protsesu [System and information substantiation of the criteria of consistency of preference systems of participants in the educational process]. Pedahohichni innovatsii: idei, realii, perspektyvy [Pedagogical innovations: ideas, realities, perspectives]. 1, 70–78. https://doi.org/10.32405/2413-4139-2020-1(28)-70-78 [in Ukr.].
  40. Reva, O. M., Kamyshyn, V. V., Kyrychenko, K. V., Yarotskyi, S. V., & Sahanovska, L. A. (2023). Formuvannia spektru systemno-infomatsiinykh kryteriiv uzghodzhenosti ekspertnykh dumok [Formation of a spectrum of system-information criteria for the consistency of expert opinions]. Nauka, tekhnolohii, innovatsii [Science, technology, innovation]. 2 (26), 26–39. http://doi.org/10.35668/2520-6524-2023-2-04/ [in Ukr.].
  41. Zade, L. (1976). Ponyatie lingvisticheskoy peremennoy i ego primenenie k prinyatiyu priblizhennykh resheniy [The concept of a linguistic variable and its application to approximate decision making]. Moscow, 165 p. [in Russ.].
  42. Sheridan, T. B., & Ferrel, U. R. (1980). Sistemy chelovek-mashina: Modeli obrabotki informatsii, upravleniya i prinyatiya resheniy chelovekom-operatorom [Human-machine systems: Models of information processing, control and decision-making by a human operator]. Moscow, 400 p. [in Russ.].
  43. Mushik, E., & Myuller, P. (1990). Metody prinyatiya tekhnicheskih reshenij [Methods of making technical decisions]. Moscow, 208 p. [in Russ.].
  44. Khemdi, A. (2007). Takha. Vvedenie v issledovanie operatsiy [Operations Research: An Introduction]. Moscow, 912 p. [in Russ.].
  45. Reva, O. M., Kamyshyn, V. V., Shulhin, V. A., & Nedbai, S. V. (2010). Nechitki modeli erhonomichnoi kvalimetrii tochnosti pilotuvannia [Fuzzy models of ergonomic piloting accuracy qualimetry]. Rivne, 106 p. [in Ukr.].
  46. Biriukov, Yu. Yu. (2011). Klasychni kryterii pryiniattia rishen u vyznachenni hrupovykh perevah aviadyspetcheriv na chynnykakh bezpeky profesiinoi diialnosti [Classic criteria for decision-making in determining group preferences of air traffic controllers on factors of safety of professional activity]. Aviatsiino-kosmichna tekhnika ta tekhnolohiia [Aerospace engineering and technology]. 9, 189–194. [in Ukr.].
  47. Derlou, D. (2011). Kliuchovi upravlinski rishennia: Tekhnolohiia pryiniattia rishen [Key management decisions: Decision-making technology]. Kyiv, 242 p. [in Ukr.].
  48. Kamyshyn, V. V., & Reva, O. M. (2012). Metody systemnoho analizu u kvalimetrii nav-chalno-vykhovnoho protsesu [Methods of system analysis in the quality measurement of the educational process]. Kyiv, 270 p. [in Ukr.].
  49. Reva, O. M., Kamyshyn, V. V., Borsuk, S. P., Nevynitsyn, A. M., & Shulhin, V. A. (2020). Liudskyi chynnyk: Metodolohiia proaktyvnoi kvalymetrii zahroz pomylok aviadyspetcheriv [Human factor: Methodology of proactive risk assessment of air traffic controllers error threats]. Kyiv, 126 p. [in Ukr.].
  50. Reva, O., Nevynitsyn, A., Borsuk, S., Shulgin, V., & Kamyshyn, V. (2020). Air Traffic Controllers’ Attitude to the Mistakes Hazards during Their Professional Experience. Safety and Risk Assessment of Civil Aircraft during Operation, Longbiao Li, IntechOpen, Р. 113–127. http//doi.org/10.5772/intechopen.91937.
  51. Reva, O. M., Borsuk, S. P., & Kamyshyn, V. V. (2021). Tekhnolohiia usunennia statystychnoi pokhybky “toho, khto vyzhyv”, vyznachenni u stavlenni aviadyspetcheriv do nebezpek pomylok [The technology for eliminating the statistical error of the “survivor” in determining the attitude of air traffic controllers to the dangers of errors]. Aktualni problemy bezpeky na transporti, v enerhetytsi, infrastrukturi [Actual problems of safety in transport, energy, infrastructure]. Kherson, P. 112–116. [in Ukr.].
  52. Podinovskiy, V. V., & Gavrilov, V. M. (1975). Optimizatsiya po posledovatelno primenyaemym kriteriyam [Optimization based on consistently applied criteria]. Moscow, 192 p. [in Russ.].
  53. Reva, O. M., Kamyshyn, V. V., Sahanovska, L. A., & Yarotskyi, S. V. (2022). Teoretychni osnovy modeliuvannia «kompromisu» u vymohakh do vsebichnoho rozvytku obdarovanosti tykh, khto navchaietsia [Theoretical foundations of modeling the “compromise” in the requirements for the comprehensive development of the giftedness of those who study]. Osvita ta rozvytok obdarovanoi osobystosti [Education and development of a gifted personality]. 3 (86), 20–27. [in Ukr.].
  54. Reva, O. M., Borsuk, S. P., Zasanska, S. V., & Yarotskyi, S. V. (2021). Teoretychni osnovy metodolohii intehratyvnoi otsinky stupenia investytsiinoi pryvablyvosti obiektiv intelektualnoi vlasnosti [Theoretical foundations of the methodology of integrative assessment of the degree of investment attractiveness of intellectual property objects]. Nauka, tekhnolohii, innovatsii [Science, technology, innovation]. 1, 3–16. http//doi.org/2520-6524-2021-1-01 [in Ukr.].