http://doi.org/10.35668/2520-6524-2025-3-03
Pivovarov O. A. — D. Sc. in Engineering, Professor, Professor of the Department of Food Technologies, Dnipro State Agrarian and Economic University, 25, Serhiy Yefremov Str., Dnipro, Ukraine, 49000; +38 (097) 342-46-60; alexander.pivovarov15@gmail.com; ORCID: 0000-0003-0520-171X
Koshulko V. S. — PhD in Engineering, Associate Professor, Head of the Department of Food Technologies, Dnipro State Agrarian and Economic University, 25, Serhiy Yefremov Str., Dnipro, Ukraine, 49000; +38 (096) 924-82-67; vitaliykoshulko@gmail.com; ORCID: 0000-0002-0744-6318
USE OF ENGINEERING IN FOOD PRODUCTION
Abstract. The article is devoted to the analysis of international experience in the application of engineering in industrial practice, its purpose and effectiveness in the growing engineering, technological, environmental and economic space of the agricultural complex, as well as food production. Practice shows that the features of engineering in the food industry predictably stimulate production, the quality of the final product grows similarly to the demand for it, raw materials are used rationally, the level of environmental friendliness increases, which leads the production to the level of international standards aimed at preserving and economical costs of the raw material base, improving the ecological state through the use of the latest technologies in the physical, chemical and biological fields with the involvement of modern digital tools. The rating of food production, consumer confidence in modern food products, the role of industries engaged in the processing of agricultural waste are increasing, which is demonstrated by the example of biohydrogen production with dark fermentation. Attention is paid to substitutes for animal products with those that use raw materials of plant origin. All engineering activities contribute to the transition of food production to a new technological level, as required by time and a growing society.
Keywords: engineering, food science, food, artificial intelligence, agricultural sector, digitalization, agri-food systems, food security.
REFERENCES
- Awulachew, M. (2024). Engineering Principles and Business Model Innovation in Food Systems to Achieve Sustainable Development Goals. Asian Science Bulletin, 2 (3), 229-241. DOI: https://doi.org/10.3923/asb.2024.229.241.
- Saguy, I. , Roos, Y. H., & Cohen, E. (2018). Food engineering and food science and technology: Forward-looking journey to future new horizons. Innovative Food Science & Emerging Technologies, 47, 326-334. DOI: https://doi.org/10.1016/j.ifset.2018.03.001.
- Gherasim, A., Arhire, L. , Niță, O., Popa, A. D., Graur, M., & Mihalache, L. (2020). The relationship between lifestyle components and dietary patterns. Proceedings of the Nutrition Society, 79 (3), 311-323. DOI: https://doi.org/10.1017/S0029665120006898.
- Vermeulen, S. , Park, T., Khoury, C. K., & Béné, C. (2020). Changing diets and the transformation of the global food system. Annals of the New York Academy of Sciences, 1478 (1), 3-17. DOI: https://doi.org/10.1111/nyas.14446.
- Alkhafaji, M. A. J. (2024). The modern food industry: trends, challenges, and innovations. Іraqi journal of market research and consumer protection, 16 (1), 135-145. DOI: https://doi.org/10.28936/jmracpc16.1.2024.(11).
- Ritchie, H., Rodés-Guirao, L, Mathieu, E., Gerber, M., Ortiz-Ospina, E., & Hasell, J. et al. (2023). Population Growth. org. Retrieved from: https://ourworldindata.org/population-growth.
- Cattaneo, A., Federighi, G., & Vaz, S. (2021). The environmental impact of reducing food loss and waste: A critical assessment. Food Policy, 98, 101890. DOI: https://doi.org/10.1016/j.foodpol.2020.101890.
- Hirvonen, K., Bai, Ya., Headey, D., & Masters, W. (2020). Affordability of the eat – lancet reference diet: a global analysis. The Lancet Glob Health, 8 (1), E59-E66. DOI: https://doi.org/10.1016/S2214-109X(19)30447-4.
- van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2, 494-501. DOI: https://doi.org/10.1038/s43016-021-00322-9.
- Fatima, Na., Emambux,N., Olaimat, A. N., Stratakos, A. Ch., Nawaz, A., & Wahyono, A. et al. (2023). Recent advances in microalgae, insects, and cultured meat as sustainable alternative protein sources. Food and Humanity, 1, 731-741. DOI: https://doi.org/10.1016/j.foohum.2023.07.009.
- Cabelkova, I. (2024). Understanding Public Perception of Genetically Modified Food: Navigating Misinformation and Trust. Food Science & Nutrition Technology, 9 (3), 1-5. DOI: https://doi.org/10.23880/fsnt-16000354.
- Muncke, J., Andersson, A.-M., Backhaus, Th., Boucher, J. M., Almroth, B. C., & Castillo, A. C. et al. (2020). Impacts of food contact chemicals on human health: a consensus statement. Environ Health, 19:25. DOI: https://doi.org/10.1186/s12940-020-0572-5.
- Rangavajla, N. (2025). Food Processing Innovations are a Powerful Enabler of the Future of Food, Making a Compelling Case for Entrepreneurship and Collaboration Between Industry and Academia to Ensure a Sustainable Future. J Food Process Engineering, 48, DOI: https://doi.org/10.1111/jfpe.70066.
- Kovačević, S., Milica Karadžić Banjac, M. K., & Podunavac-Kuzmanovic, S. (2025). Artificial Intelligence and Experimental Design: The Flywheel of Innovating Food Processing Engineering. Processes, 13 (3), 846. DOI: https://doi.org/10.3390/pr13030846.
- Aziz, M. A., Brini, F., Rouached, H., & Masmoudi, Kh. (2022). Genetically engineered crops for sustainably enhanced food production systems. Front Plant Sci, 13, DOI: https://doi.org/10.3389/fpls.2022.1027828.
- Rasheed, , Gill, R. A., Hassan, M. U., Mahmood, A., Qari, S., & Zaman, Q. U. (2021). A Critical Review: Recent Advancements in the Use of CRISPR/Cas9 Technology to Enhance Crops and Alleviate Global Food Crises. Curr Issues Mol Biol, 43(3), 1950-1976. DOI: https://doi.org/10.3390/cimb43030135.
- Marti, P., Massari, S., & Recupero, A. (2023). Transformational design for food systems: Cultural, social and technological challenges. International Journal of Food Design, 8, 109-132. DOI: https://doi.org/10.1386/ijfd_00053_1.
- Brock, S. (2023). What is a food system? Exploring enactments of the food system multiple. Agriculture and Human Values, 40, 799- DOI: https://doi.org/10.1007/s10460-023-10457-z.
- Ritchie, H., Rosado, P., & Roser, M. (2022). Environmental Impacts of Food Production. Our World in Data. Access mode: https://ourworldindata.org/environmental-impacts-of-food.
- Fung, F., Wang, Y.-Sh., & Menon, S. (2018). Food safety in the 21st century. Biomedical Journal, 41(2), 88-95. DOI: https://doi.org/10.1016/j.bj.2018.03.003.
- Özkaya, F. , Durak, M. G., Doğan, O., Bulut, Z. A., & Haas, R. (2021). Sustainable consumption of food: Framing the concept through Turkish expert opinions. Sustainability, 13(7), 3946. DOI: https://doi.org/10.3390/su13073946.
- Holden, N. M., White, E. P., Lange, M. C., & Oldfield, Th. L. (2018). Review of the sustainability of food systems and transition using the Internet of Food. NPJ Science of Food, 18. DOI: https://doi.org/10.1038/s41538-018-0027-3.
- Vahdanjoo, , Sørensen, C. C., & Nørremark, M. (2025). Digital transformation of the agri-food system. Current Opinion in Food Science, 63, 101287. DOI: https://doi.org/10.1016/j.cofs.2025.101287.
- Abiri, R., Rizan, N., Balasundram, S. K., Shahbazi, A. B., & Abdul-Hamid, H. (2023). Application of digital technologies for ensuring agricultural productivity. Heliyon, 9 (12), e22601. DOI: https://doi.org/10.1016/j.heliyon.2023.e22601.
- Chhetri, B. (2023). Applications of Artificial Intelligence and Machine Learning in Food Quality Control and Safety Assessment. Food Engineering Reviews. 16, 1-21. DOI: https://doi.org/10.1007/s12393-023-09363-1.
- Rejeb, A., Rejeb, K., & Hassoun, A. (2025). The impact of machine learning applications in agricultural supply chain: a topic modeling-based review. Discover Food, 5, 141. DOI: https://doi.org/10.1007/s44187-025-00419-1.
- Falcone, G., Stillitano, T., Iofrida, N., Spada, E., Bernardi, B., & Gulisano, G. et al. (2022). Life cycle and circularity metrics to measure the sustainability of closed-loop agri-food pathways. Sustain. Food Syst, 6, 1014228. DOI: https://doi.org/10.3389/fsufs.2022.1014228.
- Panigrahy,, & Rout, G. R. (2025). Nanomaterials in food processing, packaging preservation and their effects on health & environment. European Food Research and Technology, 251, 861-875. DOI: https://doi.org/10.1007/s00217-025-04676-3.
- Biswas, R., Alam, M., Sarkar, A., Haque, I., Hasan, M., & Hoque, M. (2022). Application of nanotechnology in food: processing, preservation, packaging and safety assessment. Heliyon, 8 (11), e11795. DOI: https://doi.org/10.1016/j.heliyon.2022.e11795.
- Taggar, M. S., Kaur, A., Jain, C., & Kalia, A. (2024). Hydrogen production via dark fermentation: a review of influential factors. Cellulose Chemistry and Technology, 58 (9-10), 1051- DOI: 10.35812/CelluloseChemTechnol.2024.58.90.
- (2022). Global Hydrogen Review 2023. IEA. Retrieved from: https://www.iea.org/reports/global-hydrogen-review-2023.
- Albuquerque, M. M., Sartor, G. B., Martinez-Burgos, J., Scapini, Th., Edwiges, Th., & Soccol, C. R. et al. (2024). Biohydrogen Produced via Dark Fermentation: A Review. Methane, 3 (3), 500-532. DOI: https://doi.org/10.3390/methane3030029.
- Xue, S., Chen, H., Wang, F., Lv, G., Tan, L., & Liu, G. (2024). The effect of substrate acidification on the biohydrogen production by dark fermentation. International Journal of Hydrogen Energy, 49 (Part A), 177-188. DOI: https://doi.org/10.1016/j.ijhydene.2023.07.183.
- (2023). Innovatsiini tekhnolohii rozvytku kharchovykh vyrobnytstv ta restorannoi industrii: naukovi poshuky molodi [Innovative technologies for the development of food production and the restaurant industry: scientific research of young people]. International Scientific and Practical Conference of Higher Education Students and Young Scientists (October 26, 2023). Kharkiv, 147 p. Retrieved from: https://biotechuniv.edu.ua/nauka/konferentsiyi/. [in Ukr.].
- Bernyk, I. M., Novhorodska, N. V., Solomon, A. M., Ovsiienko, S. M., & Bondar, M. M. (2022). Innovatsiini tekhnolohii kharchovykh vyrobnytstv [Innovative technologies of food production]. Vinnytsia, 300 p. [in Ukr.].
- Zubchenko, L. S., & Kuzminskyi, Ye. V. (2015). Analiz produktyvnosti biotekhnolohichnoho otrymannia vodniu za vykorystannia mikroorhanizmiv z riznymy typamy metabolizmu, perspektyvni napriamky podalshykh doslidzhen [Analysis of the productivity of biotechnological hydrogen production using microorganisms with different types of metabolism, promising directions for further research]. ScienceRise, 10 (6 (15)), 47- [in Ukr.].