Science, Technologies, Innovations №1(25) 2023, 44-55 p

 PDF

http://doi.org/10.35668/2520-6524-2023-1-06

Pavlov S. V. — D. Sc. in Engineering, Professor, Department of Biomedical Engineering and Optic-Electro­nic
Systems, Vinnytsia National Technical University, 95, Khmelnitsky highway, Vinnytsia, Ukraine, 21021;
+38 (097) 239-43-06; psv@vntu.edu.ua; ORCID: 0000-0002-0051-5560

Mezhiievska I. A. — PhD of Medical Sciences, Associated Professor, Department of Internal Medicine No. 3, National Pirogov Memorial Medical University, 56, Pirogov str., Vinnytsya, Ukraine, 21018; +38 (096) 962-67-06; irinamezhiievska@gmail.com; ORCID: 0000-0003-0676-379X

Wójcik W. — D. Sc. in Engineering, Professor, Lublin University of Technology, Nadbystrzycka 38d, Lublin, Poland, 20-618; +48 (601) 362-405; waldemar.wojcik@pollub.pl; ORCID: 0000-0002-0843-8053

Vlasenko O. V. — D. Sc. of Medical Sciences, Professor, Vice-rector, Laboratory of Experimental Neurophysiology, National Pirogov Memorial Medical University, 56, Pirogov str., Vinnytsya, Ukraine, 21018; +38 (067) 760-00-62; vlasenko@vnmu.edu.ua; ORCID: 0000-0001-8759-630X

Avrunin O. H. — D. Sc. in Engineering, Professor, Head of Biomedical Engineering Department, Kharkiv National University of Radio Electronics, Kharkiv, 14, Nauky Ave, Kharkiv, Ukraine, 61166; +38 (050) 598-00-86; oleh.avrunin@nure.ua; ORCID: 0000-0002-6312-687X

Maslovskyi V. Yu. — D. Sc. of Medical Sciences, Associated Professor, Department of Internal Medicine No. 3, National Pirogov Memorial Medical University, 56, Pirogov str, Vinnytsya, Ukraine, 21018; +38 (068) 293-18-81; vmaslovskyi@gmail.com; ORCID: 0000-0001-5184-1799

Volosovych O. S. — Master Student, Department of Biomedical Engineering and Optic-Electronic Systems, Vinnytsia National Technical University, 95, Khmelnitsky highway, Vinnytsia, Ukraine, 21021; +38 (063) 702-99-60; sashka.v0@gmail.com; ORCID: 0000-0002-5497-6805

PERSPECTIVES OF THE APPLICATION OF MEDICAL INFORMATION TECHNOLOGIES FOR ASSESSING THE RISK OF ANATOMICAL LESION OF THE CORONARY ARTERIES

Abstract. The work analyzes the world experience in the development of medical information technologies. The method of using fuzzy sets for the implementation of an information expert system for solving the problems of medical diagnostics, in particular, during assessing the degree of anatomical damage of the coronary bed in patients with various forms of coronary artery disease, has been developed. The practical value of the work lies in the possibility of using an automated expert system to solve the problems of medical diagnosis based on fuzzy logic when assessing the degree of anatomical damage of the coronary bed in patients with various forms of coronary artery disease.

Keywords: medical information technologies, medical information systems, coronary channels, coronary artery disease.

REFERENCES

  1. Wójcik, W., Mezhiievska, I., Pavlov, S. V., Lewandowski, T., Vlasenko, O. V., Maslovskyi, V., Volosovych, O., Kobylianska, I., Moskovchuk, O., Ovcharuk, V., & Lewandowska, A. (2023). Medical Fuzzy-Expert System for Assessment of the Degree of Anatomical Lesion of Coronary Arteries. Int. J. Environ. Res. Public Health20, 979 p.
  2. Maslovskyi, V., & Mezhiievska, I. (2021). Features of the coronary arteries anatomical lesions in nstemi patients depending on the association with the initial clinical characteristics. Georgian Med News, 320, 85–89.
  3. Choi, Y., Lee, J. H., & Seo, J. I. (2020). Change in T/QRS ratio can be a supplementary diagnostic tool in predicting coronary artery disease in patients with NSTEMI. Am J Emerg Med, 39, 48–54. https://doi.org/10.1016/j.ajem.2020.01.013.
  4. Shafiq, A., Jang, J. S., Kureshi, F., Fendler, T. J., Gosch, K., Jones, P. G., Cohen, D. J., Bach, R., & Spertus, J. A. (2016,). Predicting Likelihood for Coronary Artery Bypass Grafting After Non-ST-Elevation Myocardial Infarction: Finding the Best Prediction Model. Ann Thorac Surg. 102 (4), 1304–1311. https://doi.org/10.1016/j.athoracsur.2016.03.090.
  5. Blondheim, D. S., Kleiner-Shochat, M., Asif, A., Kazatsker, M., Frimerman, A., Abu-Fanne, R., Neiman, E., Barel, M., Levy, Y., Amsalem, N., Shotan, A., & Meisel, S. R. (2018). Characteristics, Management, and Outcome of Transient ST-elevation Versus Persistent ST-elevation and Non-ST-elevation Myocardial Infarction. Am J Cardiol. 15, 121(12), 1449–1455. https://doi.org/10.1016/j.amjcard.2018.02.029.
  6. Maslovskyi, V. I., & Mezhiievska, I. A. (2022). The level of growth stimulating factor expressed by gene 2 and troponin i in the blood plasma of nstemi patients depending on different clinical characteristics. Wiad Lek, 75 (1 pt 2), 289–292.
  7. Lopez-de-Andres, A., Jimenez-Garcia, R., Hernández-Barrera, V., de Miguel-Yanes, J. M., Albaladejo-Vicente, R., Villanueva-Orbaiz, R., Carabantes-Alarcon, D., Zamorano-Leon, J. J., Lopez-Herranz, M., & de Miguel-Diez, J. (2021 Apr 22). Are there sex differences in the effect of type 2 diabetes in the incidence and outcomes of myocardial infarction? A matched-pair analysis using hospital discharge data. Cardiovasc Diabetol 20(1), 81. https://doi.org/10.1186/s12933-021-01273-y.
  8. Stehli, J., Martin, C., Brennan, A., Dinh, D. T., Lefkovits, J., & Zaman, S. (2019). Sex Differences Persist in Time to Presentation, Revascularization, and Mortality in Myocardial Infarction Treated With Percutaneous Coronary Intervention. J Am Heart Assoc. 8(10), e012161. https://doi.org/10.1161/JAHA.119.012161.
  9. Amosov, N. M., Zaitsev, N. G., & Popov, N. A. (1969). Avtomatizirovannaya sistema obrabotki medicinskih dannyh [Automated medical data processing system]. Kyiv, 128 p. [in Russ.]
  10. Kirklin, J. К., & Kirkli, J. W. (1981). Algorithm of the treatment to sharp heavy warmhearted insufficiency. Ann. Thorac. Sms, 32, 311–319.
  11. Amosov, N. M., Popov, A. A., & Melnikov, V. G., etc. (1969). Basic tasks of medical cybernetics. Kyiv. 98 p.
  12. Vlasenko, O., Wójcik, W., & Pavlov, S. V. etc. (2019). Multichannel system for recording myocardial electrical activity. Information Technology in Medical Diagnostics II. CRC Press. Balkema book, Taylor & Francis Group, London, UK, P. 307–314.
  13. Serkova, V., Pavlov, S., & Romanava, V. etc. (2017). Medical expert system for assessment of coronary heart disease destabilization based on the analysis of the level of soluble vascular adhesion molecules // Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments, 104453O. https://doi.org/10.1117/12.2280984.
  14. Chakovsky, I., & Sydorova, N. (Eds.). (2012). Coronary Atrery Diseases, Janeza Trdine 9, 51000, Rijeka, Croatia, 332 p.
  15. Rothstein, A. P. (1999). Intellektual’nye tekhnologii identifikacii: nechetkaya logika, geneticheskie algoritmy, nejronnye seti [Intelligent identification technologies: fuzzy logic, genetic algorithms, neural networks]. Vinnytsia, 320 p. [in Russ.].
  16. Avrunin, O. H., Semenets, V. V., Abakumov, V. H., Hotra, Z. Iu., Zlepko, S. M., Kipenskyi, A. V., & Pavlov, S. V. (2019). Osnovy reiestratsii ta analizu biosyhnaliv [Basics of registration and analysis of biosignals]. Kharkiv, 400 p. [in Ukr.].
  17. Amosov, N. M., Popov, A. A., & Melnikov, V. G. etc. (1969). Osnovnye zadachi medicinskoj kibernetiki [The main tasks of medical cybernetics]. Kyiv, 98 p. [in Russ.].
  18. Vorobyov, E. I., & Kitov, A. I. (1977). Vvedenie v medicinskuyu kibernetiku [Introduction to medical cybernetics]. Moscow, 286 p. [in Russ.].
  19. Vesnenko, A. I., Popov, A. A., & Pronenko, M. I. (2002). Topo-tipologiya struktury rozvernutogo klinicheskogo diagnoza v sovremennyh medicinskih informacionnyh sistemah i tekhnologiyah [Topo-typology of the structure of a detailed clinical diagnosis in modern medical information systems and technologies]. Cybernetics and system analysis. 6, 143–154. [in Russ.].
  20. Prokopchuk, V. A. (2006). Razrabotka struktury bazy znanij medicinskoj intellektual’noj sistemy na osnove formalizma [Development of the structure of the knowledge base of a medical intellectual system based on formalism]. Artificial Intelligence, 4, 469–474. [in Russ.].
  21. Lishchuk, V. A., Gavrilov, A. V., & Shevchenko, G. V., ets. (2003). Ob infrastrukture informacionnoj podderzhki klinicheskoj mediciny [On the infrastructure of information support for clinical medicine]. Medical technology. 4, 36–42. [in Russ.].
  22. Fainzilberg, L. S. (2010). Matematicheskie metody ocenki poleznosti diagnosticheskih priznakov [Mathematical methods for assessing the usefulness of diagnostic features]. Kyiv, 152 p. [in Russ.].
  23. Avrunin, O. G., Bodyanskyi, E. V., Kalashnyk, M. V., Semenets, V. V., & Filatov, V. O. (2018). Suchasni intelektualni tekhnolohii funktsionalnoi medychnoi diahnostyky [Modern intellectual technologies of functional medical diagnostics]. Kharkiv, 236 p. [in Ukr.].
  24. Wójcik, W., Pavlov, S., & Kalimoldayev, M. (2019). Information Technology in Medical Diagnostics II. London: Taylor & Francis Group, CRC Press, Balkema book. 336 p.
  25. Pavlov, S. V., Wójcik, W., & Smolarz, A. (2017). Information Technology in Medical Diagnostics by CRC Press. 210 p.
  26. Shkilniak, L., Wójcik, W., Pavlov, S., & Vlasenko, O. (2022). Expert fuzzy systems for evaluation of intensity of reactive edema of soft tissues in patients with diabetes. IAPGOS, 3, 59–63. https://doi.org/10.35784/iapgos.3037.