Science technology innovation №3(7) 2018, 62-73 p


Vertiy A. — Adviser of Ukrainian Institute for Scientific, Technical Expertise and Information, 180, Antonovicha Str., Kyiv, Ukraine, 03680;; L.N. Gumilyov Eurasian National University, 2, Mirzoyana Str., Astana, Republic of Kazakhstan, 010000

Sabyrov As. — L.N. Gumilyov Eurasian National University, 2, Mirzoyana Str., Astana, Republic of Kazakhstan, 010000

Sirenko Yu. — L.N. Gumilyov Eurasian National University, 2, Mirzoyana Str., Astana, Republic of Kazakhstan, 010000; O.Ya. Usikov Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine, 12, Academician Proskura Str., Kharkiv, Ukraine 61085

Sautbekov S. — L.N. Gumilyov Eurasian National University, 2, Mirzoyana Str., Astana, Republic of Kazakhstan, 010000

Sabyrov Ar. — Nazarbayev University, 53, Kabanbay batyr Str., Astana, Republic of Kazakhstan, 010000

Pavlikov V. — M.E. Zhukovsky National Aerospace University, 17, Chkalov Str., Kharkiv, Ukraine, 61070


Abstract. In this paper, a radiometric 3D method for visualizing hidden weapons and flammable liquids is considered. Ideas and methods are based on the use of a two-channel radiometric circuit operating in the 8 mm wavelength range. The problem of visualizing electromagnetic fields in the millimeter wavelength range is studied experimentally with the aim of constructing a radio image of various objects, i.e. the radiovision problem in the subterrahertz wavelength range is solved. The need for such systems, especially in recent years, is motivated by the growing level of terrorist threats in the air, sea and rail transport. In other words, within the framework of the present work, an approach has been developed that makes it possible to detect weapons and dangerous liquids that are hermetically sealed in plastic containers.

Keywords: 3D passive radiometry, weapon monitoring, detection of hazardous liquids, radiometric visualization of objects, digital signal and image processing methods, flammable liquids, passive perimeter control.

1. Turk A.S., Hocauglu A.K., Vertiy A.A. (2011) Subsurface sensing. USA: Wiley, 885 p.
2. Vertiy A., Pavlyuchenko A., Hacizade F., Kholmatov A. (2013) “3D Sub-terahertz radiometric imaging systems”, 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter
and Submillimeter Waves, Kharkiv, Ukraine.
3. Vertiy A., Pavlyuchenko A. (2014) Passive Sub-THz Imaging, In, Magnetic Resonance Detection of Explosives and Illicit Material, NATO Science for Peace and Security Series: Physics and Biophysics, DOI
10.1007/978-94-007-7265-_14, T. Apih et al. (ed.), 161-168. Springer Science + Business Meadia Dordrecht.
4. Volosyuk V. K., Kravchenko V.F., Pavlikov V.V., Pus- tovoit V.I. (2016) Statistical Synthesis of Multiantenna Ultrawideband Radiometric Complexes. Doklady Physics, Vol. 61, no. 4, pp. 179–183.
5. Volosyuk V.K., Kravchenko V.F., Kutuza B.G., Pavlikov V.V. (2015) Review of modern algorithms for high resolution imaging with passive radar. Antenna theory and techniques. ICATT’2015 : proc. of the X Intern. conf., Apr. 21–24, 2015, Kharkiv, Ukraine, pp. 45-50.
6. Volosyuk V.V., Kravcenko V.F., Kutuza B.G., Pavlikov V.V. (2014) The new method of antenna aperture synthesis with received signal decorrelation. European Conference on Synthetic Aperture Radar : proc. of the 10th Intern. conf. 03–05 June. Berlin, Offenbach, Germany, pp. 426–429.
7. Thompson A.R., Moran J.M., Swenson G.W. (2004) Interferometry and Synthesis in Radio Astronomy,
Second Edition, WILEY-VCH Verlag GmbH & Co. KGaA, 692 p. DOI: 10.1002/9783527617845. 8. Camps A., Bosch-Lluis X., Ramos-Perez I., Marchan-Hernandez J. F., Izquierdo B., Rodriguez-Alvarez
N. “New Instrument Concepts for Ocean Sensing: Analysis of the PAU-Radiometer”, in IEEE Transactions
on Geoscience and Remote Sensing, Vol. 45, no. 10, pp. 3180–3192, Oct. 2007. doi: 10.1109/TGRS.2007.894925.
9. Vertiy A., Sirenko Yu., Sautbekov S., Sabyrov As., Balabekov K., Nurimbetov N., Sabyrov Ar. (2016) The surface wave method used for detection of dangerous fluids contained in isolated plastic and glass vessels. Telecommunications and Radio Engineering. Vol. 75 (19), pp. 1695–1703.
10. Radioteplocation (passive radar) A.G. Nikolaev, S.V. Pertsov, 1964. — 334 p.
11. E.A. Malyshkin. Passive radiolocation, 1961. — 72 p.
12. Radio telescopes and radiometers. N.A. Esepkina, D.V. Korolkov, Yu.N. Parian, 1973. — 416 p.
13. Introduction to Fourier optics. J. Goodman, 364 p.
14. Digital image processing. R. Gonzalez, R. Woods, 2012. 1104 p.
15. Skou N., Kristersen S.S. (1991) Comparison of Imagery from a Scanning and a Pushbroom Microwave Radiometer. IEEE Proc. Of IGARSS-91, pp. 2107–2110.
16. Appleby R., Anderton N. (2007) Millimeter-Wave and Submillimeter-Wave Imaging for Security and Surveillance. Proc. of the IEEE. Aug.Vol.95, no.8, pp. 1683–1690.
17. Pergande A. (2007) New steps for Passive Millimeter Imaging. Proceedings of SPIE in Passive Millimeter- Wave Imaging Technology X, Orlando, FL, USA. April, Vol. 6548, pp. 654802-1-654802-4.
18. Vertiy A., Tekbas M., Kizilhan A., Panin S., Ozbek S. (2010) Sub-terahertz Radiometric Imaging System for Concealed Weapon Detection. PIERS-2010, Cambridge, US.
19. Vertiy A., Ozbek S., Pavlyuchenko A., Panin S., Tekbas M., Kizilhan A., Cetinkaya H., Unal A. (2011) Short- and Long-Range Passive Imaging in Millimeter-Wave-Band. URSI GASS-2011, Istanbul.

20. Vertiy A., Ozbek S., Pavlyuchenko A., Panin S., Tekbas M., Kizilhan A., Cetinkaya H., Unal A. (2011) Passive radiometric imaging systems in millimeter wavelength range. 2011 IEEE AP-S/URSI, Washington, US.
21. Lim Jae S. (1990)Two-Dimensional Signal and Image Processing. Englewood Cliffs. NJ. Prentice Hall, pp. 548.
22. Piechl M., H. Suss S.D., Greiner M., Jirousek M. (2004) Imaging Technologies and Applications in
Microwave Radiometry. European Radar conference. Amsterdam, pp. 269–273.
23. Yujiri L., Shoucri M., Moffa P. (2003) Passive Millimeter-wave Imaging. IEEE Microwave magazine,
September, pp. 39–50.
24. Radzikhovsky V.N., Gorishnyak V.P., Kuzmin S.E., Shevchuk B.M. (2001) Passive millimeter-wave imaging system. Proceeding of CriMiCo’. Sevastopol, Crimea, Ukraine, September 10–14, pp. 263–264.