Science, Technologies, Innovations №4(36) 2025, 75-81 р

http://doi.org/10.35668/2520-6524-2025-4-08

Chervakov D. O. – PhD in Engineering, Associate Professor, Department of Fuels, Polymer and Printing Materials Technology, Ukrainian State University of Science and Technology; SEI “Ukrainian State University of Chemical Technologies”, 8, Nauky Ave., Dnipro, Ukraine, 49005; +38 (050) 363-44-02; dchervakov@ukr.net; ORCID: 0000-0003-1521-9171

Chekmez V. M. – Executive Director, LLC “UKRTRUBOIZOL”, 2, Zavodska Str., Melioratyvne, Dnipropetrovsk Region, Ukraine, 51217; +38 (097) 956-31-25; vchekmez@gmail.com; ORCID: 0009-0005-5969-4777

Loskutov O. Yu. – Quality Director, LLC “UKRTRUBOIZOL”; 2, Zavodska Str., Melioratyvne, Dnipropetrovsk Region, Ukraine, 51217; +38 (050) 704-89-08, a.loskutov@uti.ua; ORCID: 0009-0006-7002-9994

Ovsianykov V. V. – Postgraduate Student, State Higher Education Institution “Priazovskyi State Technical University”, Dnipro, Ukraine; Technical Director, LLC “UKRTRUBOIZOL”, 2, Zavodska Str., Melioratyvne, Dnipropetrovsk Region, Ukraine, 51217; +38 (068) 783-18-68; tehdir@uti.ua; ORCID: 0000-0001-8458-176X

POLYURETHANE SYSTEMS WITH CHEMICAL BLOWING FOR INTEGRATED PIPE INSULATION WITHIN POLYETHYLENE CASINGS

Abstract. The study considers the possibility of applying chemically foamed polyurethane systems as an alternative to polyurethane foams produced with acyclic and cyclic hydrocarbon blowing agents (pentane, cyclopentane) in the manufacture of pre-insulated pipes of the steel-polyurethane-polyethylene type. The basis for analysis and investigation was industrial systems in which foaming occurs due to the reaction of isocyanate with water, generating carbon dioxide without the use of external blowing agents. A comparison of the properties of the resulting foam with the requirements of current international standards confirmed full compliance of density, strength, and thermal conductivity indicators with normative limits. Certification tests of finished pipes and fittings, carried out in accredited laboratories, demonstrated the stability of the insulation structure and the level of adhesive interaction in steel-polyurethane-polyethylene systems. Chemical foaming makes it possible to eliminate explosive agents, reduce environmental impact, and simplify production without loss of thermal insulation efficiency. The obtained results confirm the feasibility of using chemically foamed systems as a baseline solution for modern heat-insulated pipelines.

Кeywords: polyurethane foam, chemical foaming, water-blown systems, pipe insulation, steel-polyurethane-polyethylene pipes, thermal conductivity, adhesion.

REFERENCES

  1. (2008). DSTU B V.2.5-31:2007. Truby stalevi z teploizoliatsiieiu z pinopoliuretanu ta zakhysnoiu obolonkoiu z polietylenu. Zahalni tekhnichni umovy [DSTU B V.2.5-31:2007. Steel pipes with polyurethane foam thermal insulation and polyethylene protective sheath. General technical conditions]. Kyiv, 48 p. [in Ukr.].
  2. (2017). DSTU EN 253:2016. Merezhi teplopostachannia. Poperedno izolovani truby zi stalevoiu truboiu dlia perenesennia hariachoi vody, izoliatsiieiu z tverdoho pinopoliuretanu ta zovnishnoiu obolonkoiu z polietylenu [DSTU EN 253:2016. District heating networks. Pre-insulated pipes with steel pipe for hot water transport, rigid polyurethane foam insulation and polyethylene outer sheath]. Kyiv, 46 p. [in Ukr.].
  3. (2006). ISO 8873-1:2006. Plastics piping systems for the supply of gaseous fuels – Polyurethane tapping tees – Part 1: General requirements and performance tests. Geneva, 22 p.
  4. (2019). EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019 – Section 2.D.3: Chemical Industries. Other Solvent Use – Polyurethane (PUR) and Polystyrene (EPS) Foams. Еuropean Environment Agency (EEA). Luxembourg, 38 p.
  5. Jaf, L., Al-Moameri, H. H., Ayash, A. A., Lubguban, A. A., Malaluan, R. M., & Ghosh, T. (2023). Limits of Performance of Polyurethane Blowing Agents. Sustainability, 15 (8), DOI: 10.3390/su15086737.
  6. Choi, S. W., Jung, J. M., Yoo, H. M., Kim, S. H., & Lee, W. I. (2018). Analysis of thermal properties and heat transfer mechanisms for polyurethane foams blown with water. Journal of Thermal Analysis and Calorimetry, 134, 125- DOI: 10.1007/s10973-018-6990-8.
  7. (2007). Water blown polyurethane spray foam system: pat. US7160930B2 United States. Application. 15.07.2004; published 09.01.2007.
  8. (2006). ISO 8873-1:2006. Cellular plastics – Polyurethane raw materials – Part 1: Designation system and basis for specifications. Geneva, 12 p.
  9. (2007). ISO 8873-3:2007. Cellular plastics – Polyurethane raw materials – Part 3: Determination of properties of polyol component. Geneva, 18 p.
  10. (2007). DSTU B V.2.5-31:2007. Budivelni materialy. Materialy teploizoliatsiini. Metody vyznachennia teploprovidnosti [DSTU B V.2.5-31:2007. Building materials. Thermal insulation materials. Methods for determining thermal conductivity]. Kyiv, 28p. [in Ukr.].
  11. (1999). ISO 11561:1999. Thermal insulation products for buildings – Determination of long-term thermal resistance of closed-cell plastic foams. Geneva, 16
  12. (2019). EN 253:2019. District heating pipes – Preinsulated bonded pipe systems for directly buried hot water networks – Requirements and test methods. Brussels, 44 p.