http://doi.org/10.35668/2520-6524-2024-4-08
Reva O. M. — D. Sc. in Engineering, Professor, Chief Research Fellow, Ukrainian Institute for Scientific and Technical Expertise and Information, 180, Antonovycha Str., Kyiv, Ukraine, 03150; +38 (050) 109-35-25; ran54@meta.ua; ORCID: 0000-0002-5954-290X
Kamyshyn V. V. — D. Sc. in Pedagogy, Senior Research Fellow, Corresponding Member of the National Academy of Educational Sciences of Ukraine, Director, Ukrainian Institute for Scientific and Technical Expertise and Information, 180, Antonovycha Str., Kyiv, Ukraine, 03150; +38 (050) 442-32-95; kvv@ukrintei.ua; ORCID: 0000-0002-8832-9470
Borsuk S. P. — D. Sc. in Engineering, Associate Professor, Ukrainian Institute for Scientific and Technical Expertise and Information, 180, Antonovycha Str., Kyiv, Ukraine, 03150; +38 (097) 515-90-78; greyone.ff@gmail.com; ORCID: 0000-0002-7034-7857
Yarotskyi S. V. — Head of Department of Management and Administration, National Aviation University, 1, Lyubomyr Huzar Ave, Kyiv, Ukraine, 03058; +38 (067) 238-31-77 stas_gas@ua.fm; ORCID: 0000-0003-3934-4647
Avramchuk Yu. A. — Corresponding Author, PhD in Economics, Ukrainian Institute for Scientific and Technical Expertise and Information, 180, Antonovycha Str., Kyiv, Ukraine, 03150; +38 (050) 995-98-19; yulialoshakova5@gmail.com; ORCID: 0000-0003-1083-1433
OPTIMIZATION OF THE SYSTEMS OF PREFERENCES OF SPECIALISTS ON THE SET OF FEATURES OF INVESTMENT ATTRACTIVENESS OF THE OBJECTS OF EXPERTISE
Abstract. The object of research: The central object of the study is potential investment objects that require a detailed analysis for the restoration and modernization of the national economy in the post-conflict period.
The problem to be solved: The study addresses the need to apply advanced system and information technologies to objectively and effectively assess the investment attractiveness of objects. The main focus is on identifying and analyzing the characteristics that influence investors’ decision-making.
Results: аs a result of the study, new methods for optimizing the group preference system were developed and implemented. In particular, the use of the classic Savage decision criterion and the Kemeny median significantly reduced the discrepancies between expert opinions and eliminated the problem of tied ranks. Interpretation of the results: The improvement in the accuracy and consistency of the weighting factors was due to the use of modern analytical methods that allow for effective management of group opinions and smoothing out extreme
positions.
Features and distinctive features of the results: оptimization of the basic group preference system proved to be extremely effective. The high level of consistency of the results indicates the considerable accuracy of the implemented methods, which provided a significant increase in the objectivity of investment
decisions.
Scope and conditions for practical application of the results: The optimized methods can be applied in areas where a high level of accuracy and objectivity in the evaluation of investment projects is required. This is especially relevant for economic intelligence and investment planning in the context of national economic recovery.
Keywords: investment attractiveness, Savage criterion, Kemeny median, group preference system.
REFERENCES
- Horodnichenko, Y., Sologoub, I., & Weder di Mauro, B. (Eds.). Vidbudova Ukrainy: pryntsypy ta polityka [Reconstruction of Ukraine: Principles and Policy]. Center for Economic Policy Research. Retrieved from: https://cepr.org/system/files/2022-12/reconstruction%20book_Ukrainian_0.pdf [in Ukr.].
- Zhukovska, O. A., & Fainzilberg, L. S. (2018). Matematychni modeli kolektyvnykh rishen [Mathematical Models of Collective Decisions]. Kyiv. Retrieved from: https://ela.kpi.ua/server/api/core/bitstreams/c6a37b3d-82a5-436a-85e1-b7c4e3bad3e0/content [in Ukr.].
- Reva, O. M., Kamyshyn, V. V., Borsuk, S. P., Nevinitsyn, A. M., & Shulgin, V. A. (Eds.). (2020). Liudskyi chynnyk: Metodolohiia proaktyvnoi kvalymetrii zahroz pomylok aviadyspetcheriv [The Human Factor: Methodology of Proactive Qualimetry of Threats of Errors by Air Traffic Controllers]. Kyiv. Retrieved from: http://www.uintei.kiev.ua/sites/default/files/reva_mono_13-12-2020.pdf [in Ukr.].
- Tvoroshenko, I. S. (2021). Tekhnolohii pryiniattia rishen v informatsiinykh systemakh [Decision-Making Technologies in Information Systems]. Kharkiv. Retrieved from: https://openarchive.nure.ua/server/api/core/bitstreams/852237f5-57f7-44c3-87c8-8641eb0463cd/content [in Ukr.].
- Yaroshuk, L. D. (2022). Ekspertni metody v avtomatyzovanykh systemakh keruvannia: formuvannia ta napriamy vykorystannia ekspertnykh znan [Expert Methods in Automated Control Systems: Formation and Directions of Use of Expert Knowledge]. Kyiv. Retrieved from: https://ela.kpi.ua/server/api/core/bitstreams/8a8030cf-bfc1-4586-b197-1c7e3bf02700/content [in Ukr.].
- Kamyshyn, V. V., & Reva, O. M. (2012). Metody systemnoho analizu u kvalimetrii navchalno-vykhovnoho protsesu [Methods of System Analysis in Qualimetry of the Educational Process]. Kyiv. [in Ukr.].
- Reva, O. M., & Suvorova, I. M. (2009). Modeliuvannia rozstanovky priorytetiv u vyznachenni koefitsiientiv vazhlyvosti motyviv trudovoi diialnosti vykladachiv [Modeling the prioritization in determining the coefficients of importance of motives of labor activity of teachers]. Aktualni problemy ekonomiky [Actual Problems of Economics]. 9, 243–249. Retrieved from: http://base.dnsgb.com.ua/files/journal/Aktualni-problemy-ekonomiky/Akt-prob-ekonomiky-2009-9/Akt-prob-ekonomiky-2009-9_243-249.pdf [in Ukr.].
- Semenova, N. V., & Kolechkina, L. M. (2009). Vektorni zadachi dyskretnoi optymizatsii na kombinatornykh mnozhynakh: metody doslidzhennia ta rozviazannia [Vector Problems of Discrete Optimization on Combinatorial Sets: Methods of Research and Solving]. Kyiv. Retrieved from: https://core.ac.uk/download/pdf/300239493.pdf [in Ukr.].
- Hrinka, T. I. (2015). Modeliuvannia rozstanovky priorytetiv u vyznachenni koefitsiientiv vazhlyvosti vymoh robotodavtsiv do profesiinykh znan i umin robitnykiv [Modeling the prioritization in determining the coefficients of importance of employer requirements for professional knowledge and skills of workers]. Naukovi pratsi Kirovohradskoho tekhnichnoho universytetu. Ekonomichni nauky [Scientific Works of Kirovograd Technical University. Economic Sciences]. 27, 176–185. Retrieved from: https://dspace.kntu.kr.ua/server/api/core/bitstreams/5887c2aa-c1d4-489c-992a-63f0f87e7b9c/content [in Ukr.].
- Reva, O. M., Borsuk, S. P., Zasanska, S. V., & Yarotskyi, S. V. (2021). Teoretychni osnovy metodolohii intehratyvnoi otsinky stupenia investytsiinoi pryvablyvosti obiektiv intelektualnoi vlasnosti [Theoretical foundations of the methodology of integrative assessment of the degree of investment attractiveness of intellectual property objects]. Nauka, tekhnolohii, innovatsii [Science, Technology, Innovation]. 1, 3–16. DOI: http//doi.org/2520-6524-2021-1-01 [in Ukr.].
- Mushik, E., & Müller, P. H. (1987). Entscheidungspraxis: Ziele, Verfahren, Konsequenzen. Berlin, 142 p.
- Kemeny, J. G., & Snell, J. L. (1963). Mathematical Models in the Social Sciences. Blaisdell Publishing Company, 183 p.
- Antosiak, P. P., & Samus, Ye. I. (2016). Pro medianu Kemeni-Snella ta koefitsiienta uzghodzhentnosti dumok ekspertiv [About the Kemeny-Snell median and the coefficient of consistency of experts’ opinions]. Naukovyi visnyk Uzhhorodskoho universytetu [Scientific Bulletin of Uzhhorod University. Series Mathematics and Informatics]. 1 (28), 14–17. Retrieved from: https://dspace.uzhnu.edu.ua/jspui/handle/lib/17520 [in Ukr.].
- Boltenkov, V. A., Kuvaeva, V. I., & Poznyak, A. V. (2017). Analyz medyannыkh metodov konsensusnoho ahrehyrovanyia ranhovыkh predpochtenyi [Analysis of median methods of consensus aggregation of rank preferences]. Informatyka ta matematychni metody v modeliuvanni [Informatics and Mathematical Methods in Modeling]. 7 (4), 307–317. Retrieved from: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Itmm_2017_7_4_9 [in Ukr.].
- (2022). Effective application of the Kemeny Median in heuristic algorithms. Retrieved from: https://www.mdpi.com/2079-9292/11/11/1720 Basílio, M. P., Pereira, V., Costa, H. G., Santos, M., & Ghosh, A. (2022). Systematic Review of the Applications of Multi-Criteria Decision Aid Methods (1977–2022). Electronics. 11 (11). 1720. DOI: https://doi.org/10.3390/electronics11111720.
- Soltanifar, M., Krylovas, A. & Kosareva, N. (2023). Voting-KEmeny Median Indicator Ranks Accordance method for determining criteria priority and weights in solving multi-attribute decision-making problems. Soft Computing. 27, P. 6613–6628 DOI: https://doi.org/10.1007/s00500-022-07807-0.
- Reva, O. M., Kamyshyn, V. V., Borsuk, S. P., Yarotskyi, S. V., & Saganovska, L. A. (2023). Metodolohiia systemno-informatsiinoi kvalimetrii investytsiinoi pryvablyvosti obiektiv ekspertyzy [Methodology of System-Informational Qualimetry of Investment Attractiveness of Expertise Objects]. Kyiv, 150 p. Retrieved from: http://irbis-nbuv.gov.ua/publ/REF-0000828789 [in Ukr.].
- Edwards, K., & Goffin, K. (2023). Multi-Criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design. Butterworth-Heinemann. Retrieved from: https://www.researchgate.net/publication/288749358_Multi-criteria_Decision_Analysis_for_Supporting_the_Selection_of_Engineering_Materials_in_Product_Design_Second_Edition.
- Soltanifar, M., Krylovas, A. & Kosareva, N. (2021). Voting-KEMIRA Method for Determining Criteria Priority and Weights in Solving MADM Problems. Preprints. Retrieved from: DOI: https://doi.org/10.21203/rs.3.rs-451050/v1.
- Bartholdi, III J. & Tovey, C. (2024). Kemeny’s Median and Its Generalizations: An Algebraic Approach. Journal of Mathematical Psychology. Retrieved from: https://www.researchgate.net/publication/378858835_ODE_An_Algebraic_Approach.
- Reva, O., Kamyshyn, V., Borsuk, S., Yarotskyi, S., & Avramchuk, B. (2023). Eliminating “systematic survivorship bias” in the attitude of specialists to the significance of investment attractive features of examined objects. Eastern-European Journal of Enterprise Technologies. 6 (13 (126)), P. 54–64. DOI: https://doi.org/10.15587/1729-4061.2023.292875.