Science, Technologies, Innovations №3(11) 2019, 70-82 p

 PDF

http://doi.org/10.35668/2520-6524-2019-3-08

Reva O.M. – Doctor of Technical Sciences, Professor; Principal Researcher at Ukrainian Institute of Scientific and Technical Expertise and Information вул. Антоновича, 180, Київ, Україна, 02000; Kyiv, Ukraine; +38 (044) 521-00-10; ran54@meta.ua; ORCID: 0000-0002-5954-290X

Kamyshin V.V. – Doctor of Education, Senior Researcher, Acting Director of Ukrainian Institute of Scientific and Technical Expertise and Information; +38 (044) 521-00-10; kvv@ukrintei.ua; ORCID: 0000-0002-8832-9470

Nevynitsyn A.V. – Candidate of Technical Sciences (PhD), Associate Professor – Dean of the Faculty of Air Traffic Services Flight Academy of the National Aviation University, str. Dobrovolsky building 1, Kropyvnytskyi, Kirovogradska Oblast’, Ukraine 25005; nevatse@ukr.net; ORCID: 0000-0001-7000-4929

Shulgin V.A. – Candidate of technical sciences (PhD), Assistant professor, Dean of the flight operation faculty, Flight Academy of the National Aviation University, str. Dobrovolsky building 1, Kropyvnytskyi, Kirovogradska Oblast’, Ukraine 25005; VAShulgin@ukr.net; ORCID: 0000-0001-7938-8383

DIFFERENTIAL METHOD FOR ESTABLISHING A COMPARATIVE DANGER OF AIR TRAFFIC CONTROLLERS ERRORS IN PROFESSIONAL ACTIVITY

Abstract. The advantage systems of air traffic controllers as operators of the “front line”, which are directly responsible for ensuring the appropriate level of flight safety, are considered as a component of their decision making, determines, on the one hand, the influence of the human factor on the choice they make, and on the other hand, makes this choice much easier. The use of paired comparisons and determination of part of the total comparative danger as a way of establishing the systems of benefits m = 37 of professional air traffic controllers on the spectrum from n = 21 of the characteristic errors that they make in the process of professional activity are substantiated. For the first time, the total risk of a pair of errors is determined in an absolute and unique by quasi metric features 100-­point scale, and their separate contribution to this danger covers the entire continuum of the scale. In contrast to the traditional practice, which regulates part of the total danger, it allowed for a more differentiated assessment of the comparative dangers of errors. Using the traditional and the proposed method, group systems of advantages of air traffic controllers on the studied range of errors, which are almost identical, are constructed: Spearman’s rank correlation coefficient is equal to the value of R= 0,9727. The Kendall concordance coefficient calculated for the group preference system constructed in the traditional way is equal to Wtr. = 0,2722 and statistically reliable, and therefore the corresponding preference system is consistent. The coefficient of concordance calculated for the group system of benefits based on the application of the proposed differential approach to the pairwise comparison of the dangers of errors is almost twice greater, equal to the value Wdif. = 0,5237 and statistically reliable at a high level of significance of α = 1%. This indicates both the consistency of the opinions of the subjects and the high efficiency of the proposed differential approach.

Keywords: flight safety, human factor, air traffic controllers, decision making, preference systems, characteristic errors, differential approach to determining the comparative danger of errors.

REFERENCES

  1. Fundamental Human Factors Concept (1989). Human Factors Didest. 1. Cir. ICAO 216 — AN / 131. Montreal, Canada.
  2. Investigation Of Human Factors In Accidents And Incidents (1993). Cir. ICAO240­AN/144/ — Montreal, Canada.
  3. Kontrol’ faktorov ugrozy i oshibok (KUO) pri upravlenii vozdushnym dvizheniem [Threat and error management (CLC) for air traffic control]  (2008). Cir. ICAO 314­AN/178. Montreal, Canada.
  4. Safety Management Manual (SMM) (2018). Doc ICAO 9859 — AN/460. Montreal, Canada.
  5. Davydenko, M.F., & Reva A.N. (1995). Poslednij rubezh oborony (CHelovecheskij faktor: fun­da­mental’nye koncepcii IKAO) [The Last Frontier of Defense (Human Factor: ICAO Fundamental Concepts)]. Avyakompanyia [Airlines]. 23–28 p.
  6. Reva, A.N., Tumyhev, K.M., & Bekmukhambetov, A.A. (2006). CHelovecheskij faktor i bezopasnost’ poletov: (Proaktivnoe issledovanie vliyaniya) [Human factor and safety of flights: (Proactive influence study)]. Almaty. 242 p.
  7. Plotnikov, N.I. (2008). Modelirovanie resursov deya­tel’nosti operatora letnogo truda [Flight operator resourse activity modeling]. Nauchnyi vestnyk MTHU HA [Scientific Bulletin of MTGU GA]. 135. 47–54.
  8. Reva, A.N., Borsuk, S.P., & Shulhin, V.A. (2018). Suchasni problemy liudskoho chynnyka v aviatsii [Modern Problems of the Human Factor in Aviation]. Кyiv 124 p.
  9. Reva, A.N., Borsuk, S.P., & Shulhin, V.A (2016). Stavlennia aviatsiinykh operatoriv “perednoho kraiu” do nebezpechnykh dii abo umov profesiinoi diialnosti — holovnyi chynnyk zabezpechennia bezpeky polotiv [Attitude of aviation operators of “leading edge” to dangerous actions or conditions of professional activity — the main factor for safety of flights safety]. Suchasni informatsiini ta innovatsiini tekhnolohii na transporti (MINTT­2015) [Modern information and innovation technologies at the transport port (MINTT­2015)]. Kherson, 90–97.
  10. Reva, O., Borsuk, S., & B. Mirzayev, Mukhtarov P. (2016). New Approach to Determination of Main Solution Taking Dominant of Air Traffic Controller During Flight Level Norms Violation. Advances in Human Aspects of Transportation: Proceedings of the AHFE 2016 International Conference on Human Factors in Transportation. Walt Disney World, Florida, USA. 137–147. https://doi.org/10.1007/978­3­319­41682­3_12
  11. Reva O., Borsuk S., Shulgin V., Nedbay S. (2019). Ergonomic Assessment of Instructors’ Capability to Conduct Personality­Oriented Training for Air Traffic Control (ATC) Personnel. Advances in Human Factors of Transportation Proceedings of the AHFE 2019 International Conference on Human Factors in Transportation. Washington D.C., USA. 783–793. https://doi.org/10.1007/978­3­030­20503­4_70
  12. Accident prevention manual : Doc. ІСАО 9422­AN/923. (1984). Montreal, Canada.
  13. Reva, O.M., Kamyshyn, V.V., Nevynitsyn, A.M., Nasirov, Sh.Sh. (2019). Pryiniattia rishen: systemy perevah aviadyspetcheriv na pokaznykakh chastoty i nebezpek kharakternykh pomylok [Decision making: systems of preferences of air traffic controllers on frequency indices and skypitch characteristic errors]. Intelektualni systemy pryiniattia rishen i problemy obchysliuvalnoho intelektu (ISDMCI2019) [Intelligent Decision­Making Systems and the Problems of Computational Intelligence (ISDMCI’2019)]. Kherson. 159–161.
  14. Utkina, V.F., & Kryuchkova, Yu.V. (Eds.) (1988). Nadezhnost i effektivnost v tekhnike: Effektivnost tekhnicheskikh sistem [Reliability and efficiency in technology]. Vol. 3. Moscow: Mashinostroenie Publ. 328 р.
  15. Nasyrov, Sh.Sh. (2010). Pilotne vyznachennia system perevah aviadyspetcheriv Azerbaidzhanu na kharakternykh pomylkakh v protsesi upravlinnia povitrianym rukhom [Pilot determination of sys tems of advantages of Aviation controllers of Azerbaijan on characteristic errors in the process of wind control]. Aviatsiino­kosmichna tekhnika i tekhnolohiia [Aerospace Engineering and Technology]. 7. 124–134.
  16. Kamyshyn, V. V., Reva, O. M. (2012). Metody systemnoho analizu u kvalimetrii navchalnovykhovnoho protsesu [Methods of system analysis in the qualimetry of the educational process]. Kyiv. 270 р.
  17. Reva, A.N., Myrzoev, B.M., Nasyrov, Sh.Sh., Nedbai, S.V. (2012). Empiricheskie modeli ocenki riska neopredelennosti gruppovyh sistem predpochtenij aviadispetcherov [Empirical models of riskuncertainty estimation of group systems of preferences of air traffic controllers]. Elmi mcmulr : Jurnal Milli Aviasiya Akademiyasinin. 3, 46–60.
  18. Reva, A.N., Nasirov, Sh.Sh., Myrzoev, B.M. (2018). Effektivnost’ metodov opredeleniya gruppovyh sistem predpochtenij dispetcherov na opasnosti harakter­nyh oshibok, sovershaemyh v processe upravleniya voz­dush­nym dvizheniem  [Efficiency of methods of de­­termining group systems of preferences of dispatchers on the danger of characteristic errors made in the process of air traffic control]. Aviatsiino­ kosmichna tekhnika i tekhnolohiia [Aerospace Engineering and Technology]. 6. 93–103.
  19. Miller, G. (1956). The magical number seven, plus or minus two : some limits on or capacity for processing information. Psychological Review. 63. 81–97. https://doi.org/10.1037/h0043158
  20. Kozeletskyi, Yu., & Byriukova, B.V. (Ed.) (1979). Psi­ho­lo­gicheskaya teoriya reshenij [Psychological Theory of Solutions]. Moscow: Prohress Publ. 504 р.
  21. Herasymov, B.M., & Kamyshyn, V.V. (2009). Orhanizatsiina erhonomika: Metody ta alhorytmy doslidzhen i proektuvannia [Organizational ergonomics: Methods and algorithms for research and design]. Kyiv. 212 p.
  22. Parkynson, S.N. (1989). Zakony Parkinsona [Parkinson’s Laws]. Moscow. 448 p.
  23. Devyd, H. (1978). Metod parnyh sravnenij [The method of pairwise comparisons]. Moscow: Statystyka. 144 p.
  24. Evlanov, L.H., Kutuzov V.A. (1978). Ekspertnye ocenki v upravlenii [Expert assessments in management]. Moscow. 133 p.
  25. Beshelev, S.D., & Hurvych, F.H. (1980). Matematikostatisticheskie metody ekspertnyh ocenok [Mathematical­statistical methods of expert assessments]. Moscow. Statistika. 263 p.
  26. Bliumberh, V.A., & Hlushchenko, V.F. (1982). KKakoe reshenie luchshe? Metod rasstanovki prioritetov [Which solution is better? The method of priority setting]. St.Peterburg. 160 p.
  27. Lytvak, B.H. (1982). Ekspertnaya informaciya: metody polucheniya i analiza [Expert information: methods of obtaining and analysis]. Moscow: Radio i svyaz’. 184 p.
  28. Herasymov, B.M., Dyvyzyniuk, M.M., & Subach, Y.Iu. (2004). Sistemy podderzhki prinyatiya reshe­nij: proektirovanie, primenenie, ocenka effektivnos­ti [Sys­­tems of decision support: design, appli­cation, efficiency evaluation]. Sevastopol. 320 p.
  29. Samokhvalov, Yu.Ia. & Naumenko E.M. (2007). Ekspertnoe ocenivanie: metodicheskij aspekt [Expert evaluation: methodical aspect]. Kyiv. 362 p.
  30. Hutsykova, S.V. (2011). Metod ekspertnyh ocenok. Teoriya i praktika [Expert evaluation method. Theory and Practice]. Moscow: Kohyto­Tsentr, 144 p.
  31. Trofimov, Yu.L., Rybalka, V.V., Honcharuk P.A. (2005). Psykholohiia [Psychology]. 560 p.
  32. Nasirov, Sh.Sh. (2012). Bahatokrokova protse­dura vyiavlennia statystychnouzghodzhenoi systemy perevah aviadyspetcheriv na mnozhyni kha­rakternykh pomylok yikh diialnosti [Multiyear pro­cedure for the identification of the statistically har­monized system of advantages of air traffic cont­rollers on a set of characteristic errors of their activities]. Komunalne hospodarstvo mist: naukovo­tekhnichnyi zbirnyk [Municipal economy of cities: scientific and technical collection]. Iss. 105, 461–475.
  33. Reva, O.M., Nevynitsyn, A.M., Nasirov, Sh.Sh., Lypchanskyi, V.O. (2019). Vdoskonalennia protsedury vyiavlennia system perevah aviadyspetcheriv na spektri kharakternykh pomylok [Improvement of procedure of detection of systems of advantages of air traffic controllers on the spectrum of character errors] KhXIV — Mizhnarodnyi konhres dvyhunobudivnykiv [XXIV — International People’s Congress of Engine Builders]. p. 89–90.
  34. Tarasov, V.A., Herasymov, B.M., Levyn, Y.A., & Korneichuk, V.A. (2007). Intellektual’nye sistemy podderzhki prinyatiya reshenij: Teoriya, sintez, effektivnost’ [Intelligent Decision Support Systems: Theory, Synthesis, Efficiency] Кyiv. 336 p.
  35. Miullep, P., Noiman, P., & Shtopm, R. (1982). Tablicy po matematicheskoj statistike / [Tables on Mathematical Statistics]. Moscow: Fynansy y statystyka, 278 p.
  36. Cherchmen, U., Akoff, R., Arnof, L. Vvedenie v issledovanie operacij [Churchman U. Introduction to Operations Research] Moscow: Nauka, 1968. 486 p.