Science, Technologies, Innovations №3(15) 2020, 55-64 p

 PDF

http://doi.org/10.35668/2520-6524-2020-3-06

Reva O. M. — D. Sc. in Engineering, Professor, Principal Researcher of State Institution “Ukrainian Institute of Scientific and Technical Expertise and Information”, Antonovycha str., 180, Kyiv, Ukraine, 03680; +38 (044) 521-00-10; ran54@meta.ua; ORCID: 0000-0002-5954-290X

Kamyshуn V. V. — D. Sc. in Pedagogy, Senior Researcher, Acting Director of State Institution “Ukrainian Institute of Scientific and Technical Expertise and Information”, Antonovycha str., 180, Kyiv, Ukraine, 03680; +38 (044) 521-00-10; kvv@ukrintei.ua; ORCID: 0000-0002-8832-9470

Shulgin V. A. — PhD in Engineering, Assistant Professor, Dean of the Flight Operation Faculty, Flight Academy of the National Aviation University; Dobrovolskoho str., 1, Kropyvnytskyi, Ukraine, 25005; VAShulgin@ukr.net; ORCID: 0000-0001-7938-8383

Nevynitsyn A. V. — PhD in Engineering, Associate Professor, Dean of the Faculty of Air Traffic Services Flight Academy of the National Aviation University; Dobrovolskoho str., 1, Kropyvnytskyi, Ukraine, 25005; nevatse@ukr.net; ORCID: 0000-0001-7000-4929

SYSTEM ANALYSIS: THE KEMENY’S MEDIAN AS AN OPTIMIZATION MODEL
OF THE PREFERENCES GROUP SYSTEM OF AIR TRAFFIC CONTROLLERS
OF THE DANGER OF THE CHARACTERISTIC ERRORS

Abstract. The systems of advantages of aviation operators of the “front line” on the indicators and characteristics of their professional activities is one of the indicators demonstrating the influence of the human factor on decision-making, and, consequently, on the “attitude towards dangerous actions or conditions”, which, in its turn, is one of the components of the current ICAO safety paradigm. The preference system is understood as an ordered series of the specified indicators and characteristics from the most dangerous to the least dangerous, including errors that can be made by air traffic controllers. Group systems of advantages have a number of properties (peculiarities of the prevailing in a particular society — control shift — opinions on the perception of threats and hazards, the influence of the attitude of instructor personnel to threats and dangers and the technology to overcome them, statistics of aviation accidents and serious incidents in the area of responsibility, etc.) that are desirable to take into account in the safety management process and that are found by aggregating individual systems of benefits. This aggregation occurs using strategies for making group decisions, from which one should point to the strategy of summing and averaging ranks, which is riskier, but allows establishing the degree of consistency of opinions using the Kendall concordance coefficient. An important strategy is based on the classical Savage decision-making criteria, which has an optimization content and allows minimizing deviations in opinions regarding the dangers of mistakes of both the majority and the minority of the group members. The Kemeny’s median has a pronounced nonparametric optimization content, but it is almost never used in studies of the influence of the human factor on decision making in aviation systems. Individual systems of preferences of m=37 air traffic controllers on the spectrum of n=21 characteristic errors were constructed by them using the usual method of pairwise comparisons and normative establishment of a part of the total hazard. The use of the technology for detecting and filtering out marginal thoughts — individual systems of advantages, which significantly differ from the general group, made it possible to distinguish a subgroup mA=26 with a high level of intragroup consistency of opinions: the coefficient of concordance is W=0.7144 and is statistically significant at a high level of significance a=1%. Individual preference systems of members of the mА subgroup were used to implement the heuristic algorithm and construct the desired Kemeny’s median, which improves the consistent preference system and has an unusually high coincidence with the group advantage systems obtained using other group decision strategies: the average value of Spearman’s rank correlation coefficient in 7 times increased its minimum acceptable value.

Keywords: flight safety, human factor, air traffic controllers, error risks, individual and group preference systems, optimization model, the Kemeny’s median.

REFERENCES

  1. Prognoz razvitiya vozdushnogo transporta do 2025 goda [Forecast of air transport development until 2025] (2007). Cir. ICAO 313 — AT / 134. Monreal, Kanada.
  2. Globalnyj plan obespecheniya bezopasnosti poletov (2017–2019) [Global Safety Plan (2017–2019)] (2016). Doc. ICAO 10104. Monreal’, Kanada.
  3. Safety Management Manual (SMM) (2018). DOC ICAO 9859 — AN/474. Montreal, Canada, 2018.
  4. Fundamental Human Factors Concept (1989). Human Factors Didest Nо. 1. Cir. ICAO 216 — AN / 131. Montreal, Canada.
  5. Davydenko, M. F., & Reva, A. N. (1995). Poslednyi rubezh oborony (Chelovecheskyi faktor: funda­mentalnye kontseptsyy YKAO) [The Last Frontier of Defense (Human Factor: ICAO Fundamental Concepts)]. Avyakompanyia [Airlines]. Р. 23–28.
  6. Reva, O., Borsuk, S., Mirzayev, B. & Mukhtarov, P. (2016). New Approach to Determination of Main Solution Taking Dominant of Air Traffic Controller During Flight Level Norms Violation. Advances in Human Aspects of Transportation: Proceedings of the AHFE 2016 International Conference on Human Factors in Transportation (July 27–31, 2016. Walt Disney World, USA). Florida, 37–147. https://doi.org/10.1007/978­3­319­41682­3_12
  7. Reva, O., Borsuk, S., Shulgin, V., & Nedbay, S. (2019) Ergonomic Assessment of Instructors’ Capability to Conduct Personality­Oriented Training for Air Traffic Control (ATC) Personnel. Advances in Human Aspects of Transportation: Proceedings of the AHFE 2019 International Conference on Human Factors in Transportation (July 24–28, 2019, USA). Washing­ton, 783– https://doi.org/10.1007/978­3­030­20503­4_70
  8. Reva, O. M., Kamyshyn, V. V., Nevynitsyn, A. M. & Shulhin, V. A. (2019). Dyferentsialnyi metod vstanovlennia porivnialnoi nebezpeky pomylok aviadyspetcheriv [Differential method of establishing the comparative danger of errors of air traffic controllers]. Nauka, tekhnolohii, innovatsii [Science, technologies, innovations]. 3 (11), 70–82. http://doi.org/10.35668/2520­6524­2019­3­08.
  9. Reva, M., Borsuk, S. P., Kamyshyn, V. V., Shulhin, V. A., Parkhomenko, V. D. & Lypchnskyi, V. O. (2019). Systemno­informatsiina metodolohiia proaktyvnoi kvalimetrii vplyvu liudskoho chynnyka na pryiniattia rishen v aeronavihatsiinykh systemakh [System­information methodology of proactive qualimetry of human factor influence on decision­making in aeronautical systems]. Kyiv. 166 p.
  10. Reva, O. M., Myrzoiev, B. M., Nasirov, Sh. Sh. & Mukhtarov, P. Sh. (2013) Profesiini sytuatyvni vpravy diahnostyky i korektsii nebezpechnykh stratehii pryiniattia rishen aviadyspetcheramy [Professional situational exercises for diagnostics and correction of dangerous decision­making strategies by air traffic controllers]. Suchasni informatsiini ta innovatsiini tekhnolohii na transporti (MINNT­2013) [Modern information and innovative technologies in transport. (MINNT­2013)]. Kherson, Vol. 2. P. 23–26.
  11. Reva, O. M., Myrzoiev, B. M., Nasirov, Sh. Sh. & Mukh­­tarov, P. Sh. (2013). Rozrobka metodychnoho zabezpechennia protsedur diahnostyky i korektsii nebezpechnykh stratehii pryiniattia rishen aviadyspetcheramy [Development of methodological support for diagnostic procedures and correction of unsafe decision­making strategies by aviation dispatchers]. Naukovyi visnyk Khersonskoi derzhavnoi morskoi akademii [Scientific Bulletin of the Kherson State Maritime Academy]. 1, 90–96.
  12. Reva, A. N., Nasirov, Sh. Sh., & Mirzoev, B. M. (2018). Effektivnost’ metodov opredeleniya gruppovyh sistem predpochtenij dispetcherov na opasnosti harakternyh oshibok, sovershaemyh v processe upravleniya vozdushnym dvizheniem [Efficiency of methods for determining group systems of preferences of dispatchers on the danger of characteristic errors made in the process of air traffic control]. Aviatsiino­kosmichna tekhnika i tekhnolohiia [Aviation­space engineering and technology]. 6, 93–103.
  13. Reva, O. M., Kamyshyn, V. V., Nevynitsyn, A. M. & Radetska, S. V. (2019) Bahatokrokova protsedura pryiniattia rishen shchodo uzghodzhenosti hrupovykh system perevah aviadyspetcheriv [Multi­step decision­making procedure for the consistency of group systems of preferences of air traffic controllers]. Tekhnichne rehuliuvannia, metrolohiia, informatsiini ta transportni tekhnolohii [Technical regulation, metrology, information and transport technologies]. Odesa, P. 147–152.
  14. Reva, O. M., Kamyshyn, V. V., Nevynitsyn, A. M., Bor­suk, S. P. & Shulhin V. A. (2020). Zastosuva­nnia klasychnykh kryteriiv pryiniattia rishen dlia vyznachennia ryzykiv­nevyznachenosti hrupovykh system perevah aviadyspetcheriv na nebezpekakh kharakternykh pomylok [Application of classical decision­making criteria for determining the risks of uncertainty of group systems of air traffic controllers on the dangers of characteristic errors]. Nauka, tekhnolohii, innovatsii [Science, technology, innovation]. 2 (14), 57–64. http://doi.org/10.35668/2520­6524­2020­2­07
  15. Tarasov, V. A., Gerasimov, B. M., Levin, I. A., & Kor­nejchuk, V. A. (2007). Intellektual’nye sistemy podderzhki prinyatiya reshenij: Teoriya, sintez, effektivnost’ [Intelligent systems of decision support: Theory, synthesis, efficiency]. Kyiv, 336 p.
  16. Kemeni, Dzh., & Snell, Dzh. (1972). Kiberneticheskoe modelirovanie: Nekotorye prilozheniya [Cybernetic modeling: Some applications]. Moscow, 192 p.
  17. Bury, H., & Wagner, D. (2003). Application of Kemeny’s median for group decision support. Applied Decision Support with Soft Computing. Series: Studies in Fuzziness and Soft Computing. Berlin, Vol. 124. 235–262. https://doi.org/10.1007/978­3­540­37008­6_10.
  18. Davenport, A., & Kalagnanam, J. (2004). A computational study of the Kemeny Rule for preference aggregation proceeding. AAAI’04 Proc. of the 19th National Conference on Artifical Intelligence. California, 697–702.
  19. Orlov, A. I. (2006). Teoriya prinyatiya reshenij [Theory of decision making]. Moscow, 576p.
  20. Reva, O. M., Kamyshyn, V. V., & Nasyrov, Sh. Sh. (2012). Mediana Kemeni yak hrupova sys­tema perevah aviadyspetcheriv na mnozhyni kharakternykh pomylok [Mediana Kemeni as a group system­theme of preferences of air traffic controllers on a set of characteristic errors]. Aviatsiino­kosmichna tekhnika i tekhnolohiia [Aerospace Engineering and Technology]. 4, 106–115.
  21. Kamyshyn, V. V. (2013). Protsedura pobudovy mediany Kemeni yak ostatochnoi hrupovoi systemy perevah [Procedure for constructing the median of Kemeny as the final group system of advantages]. Naukoiemni tekhnolohii [Science­intensive technologies]. 19 (3), 273–279.
  22. Samohvalov, Yu. Ya., & Naumenko, E. M. (2007) Ekspertnoe ocenivanie: Metodicheskij aspekt [Expert assessment: Methodical aspect]. Kyiv, 362 p.
  23. Boltenkov, V. A., Kuvaeva, V., & Poznyak, A. V. (2017). Analiz mediannyh metodov konsensusnogo agregirovaniya rangovyh predpochtenij [Analysis of median methods of consensus aggregation of rank preferences]. Informatyka ta matematychni metody v modeliuvanni [Informatics and mathematical methods in modeling]. 7 (4), 307–317.
  24. Granger, C. W. J., & Ramanathan, R. (1984). Improved methods of combining forecasts. Journal of Forecasting. 3, 197–204. https://doi.org/10.1002/for.3980030207
  25. Reva, O. M., Nevynitsyn, A. M., Shulhin, V. A., & Kamyshyn, V. V. (2020). Aprobatsiia mediany Kemeni dlia neparametrychnoi optymizatsii hrupovoi systemy perevah aviadyspetcheriv na mnozhyni kharakternykh pomylok [Approval of the median Kemeny for nonparametric optimization of the group system of preferences of air traffic controllers on the set of characteristic errors]. Suchasni informatsiini ta innovatsiini tekhnolohii na transporti (MINNT — 2020) [Modern information and innovation technologies on transport (MINNT — 2020)]. P. 18–21.