Science, Technologies, Innovations №3(27) 2023, 30-47 p

Reva O. M. — D. Sc. in Engineering, Professor; Head of the electronic government department in the management and administration division of National Aviation University; 1, Lubomir Guzar Avenue, Kyiv, Ukraine, 03058; +38 (067) 238-31-77;; ORCID: 0000-0002-5954-290X

Kamyshyn V. V. — D. Sc. in Pedagogy, Corresponding Member of the NAES of Ukraine, Director of Ukrainian Institute of Scientific and Technical Expertise and Information, 180, Antonovycha Str., Kyiv, Ukraine, 03150; +38 (044) 521-00-10;; ORCID: 0000-0002-8832-9470

Borsuk S. P. — D. Sc. in Engineering, Associate Professor, Head Researcher Ukrainian Institute of Scientific and Technical Expertise and Information, 180, Antonovycha Str., Kyiv, Ukraine, 03150;; ORCID: 0000-0002-7034-7857

Yarotskyi S. V. — Head of Department in the Management and Administration Division of National Aviation University, 1, Lubomir Guzar Ave, Kyiv, Ukraine, 03058; +38 (067) 238-31-77;; ORCID: 0000-0003-3934-4647

Sahanovska L. A. — Senior Lecturer of the Department of Physical and Mathematical Disciplines and Information Technologies in Aviation Systems of the Flight Academy of the National Aviation University, 1, Stepan Choban Str., Kropyvnytskyi, Kirovohrad region, Ukraine, 25005;; ORCID: 0000-0002-2560-4383


Abstract. It is expedient to study the professional activity of an expert as a person making a decision through the prism of the influence of the human factor. Among the relevant indicators of such influence, systems of advantages (individual and group) are identified and studied on the indicators and characteristics of objects of expertise. Under the system of advantages, we mean an ordered series of indicators and characteristics of the studied objects of expertise (in the context of our research, features of investment attractiveness, the spectrum of which covers n = 18 features): from more weighty, significant, attractive, etc., to less weighty. The use of indicators of the significance of these features, especially in combination with the determination of their expressiveness in a particular object, contributes, on the one hand, to the solution of the problem of obtaining an integral assessment of the degree of its investment attractiveness, which and only to which the system property of emergence is inherent, and on the other hand, — establishing “compromises” on this expressiveness. Both tasks are multi-criteria, with the first being one-step and the second being multi-step.
A more popular method for constructing individual advantage systems is pairwise comparison and normative determination of a part of the total value of the compared alternatives. Group preference systems are usually constructed by applying group decision strategies such as summing and averaging ranks. However, the practice of constructing systems of preferences in the ordering scale is given in a certain way, measurements are “loaded”, since we are talking about a linear change in ranks. The “fineness” and non-linearity of measurements should be ensured by the normalized weight coefficients of features. The definition of these coefficients is related to one of the methods for constructing personal preference systems. measurements.
Based on the obvious compilation of ranks of 18 features of the investment attractiveness of objects of expertise, including “related”, and using the mathematical method of prioritization, the required coefficients are established. The acceptability of the results of the third iteration of the method is substantiated, since, on the one hand, in this case, the requirement for the non-linearity of these coefficients is really satisfied, and on the other hand, the proper accuracy of calculations is ensured.
m = 90 specialists involved in conducting various examinations at the SSI “UkrISTEI” took part in the research. The results of their tests (individual systems of advantages on the spectrum of features of the investment attractiveness of objects of expertise) were initially processed in order to identify and reject marginal thoughts, as well as eliminate “the systematic error of the survivor”. From the initial sample of subjects, four subgroups were identified, in which the coherence of group thoughts satisfies the spectrum of system-information criteria of coherence at a high level of significance a = 1 %. The basic system of advantages is substantiated, where the ranks in the individual preference systems of its members are replaced by normalized weight coefficients. An almost absolute (significantly greater than 0,9) agreement of the obtained a-group system of advantages with the basic and its optimized versions is determined. The ways of further development of a-technology of expert research are outlined.

Keywords: features of investment attractiveness of objects of expertise, systems of advantages, normalized weight coefficients of features, a-technologies of expert research.


  1. Hrabovetskyi, B. (2010). Metody ekspertnykh otsinok: teoriia, metodolohiia, napriamky vykorystannia [Methods of expert evaluations: theory, methodology, directions of use]. Vynnytsia, 171 p. [in Ukr.].
  2. Reva, O. M., Borsuk, S. P., Zasanska, S. V., & Yarotskyi, S. V. (2021). Obgruntuvannia napriamiv vdoskonalennia ekspertnykh tekhnolohii v doslidzhenniakh liudskoho chyn-nyka [Justification of directions for improvement of expert technologies in human factor research]. Suchasni informatsiini ta in-novatsiini tekhnolohii na transporti (MINNT 2021) [Modern information and innovative technologies in transport (MINNT – 2021)]. Kherson, P. 49–54. [in Ukr.].
  3. Yaroshchuk, L. D. (Comp.). (2022). Ekspertni metody v avtomatyzovanykh systemakh keruvannia: Formuvannia ta napriamy vykorystannia ekspertnykh znan [Expert methods in automated control systems: Formation and directions of use of expert knowledge]. Kyiv, 43 p. [in Ukr.].
  4. Reva, O. M., Borsuk, S. P., Kamyshyn, V. V., Shulhin, V. A., Parkhomenko, V. D., & Lypchanskyi, V. O. (2019). Systemno-informatsiina metodolohiia proaktyvnoi kvalimetrii vplyvu liudskoho chynnyka na pryiniattia rishen v aeronavi-hatsiinykh systemakh [System-informational methodology of proactive qualitative measurement of the influence of the human factor on decision-making in air navigation systems]. Kyiv, 166 p. [in Ukr.].
  5. Reva, O., Nevynitsyn, A., Borsuk, S., Valerii Shulgin, V., & Kamyshyn, V. (2020). Air Traffic Controllers’ Attitude to the Mistakes Hazards during Their Professional Experience. Safety and Risk Assessment of Civil Aircraft during Operation, Longbiao Li, IntechOpen, Р. 113–127.
  6. Reva, O. M., Ben, A. P., & Liashenko, V. H. (2019). Systemni osnovy kvalimetrii vplyvu liudskoho chynnyka na pryiniattia rishen u sudnovodinni [Systemic bases of qualitative measurement of human factor in-fluence on decision-making in ship-driving]. Suchasni informatsiini ta innovatsiini tekhnolohii na transporti (MINNT 2019) [Modern information and innovative technologies in transport (MINNT – 2019)]. Kherson, P. 69–72. [in Ukr.].
  7. Iarotskyi, S. V. (2021). Pilotna otsinka stavlennia ekspertiv do znachushchosti kharakternykh rys innovatsiinoi pryvablyvosti obiektiv intelektualnoi vlasnosti [Pilot assessment of the attitude of experts to the significance of the characteristic features of the innovative attractiveness of intellectual property objects]. Aviatsiino-kosmichna tekhnika ta tekhnolohiia [Aerospace engineering and technology]. 4, 112–121. [in Ukr.].
  8. Kozeleckij, Yu.; Biryukov B. V. (Eds.) (1979). Psihologicheskaya teoriya reshenij [Psychological theory of decisions]. Moscow, 504 p. [in Russ.].
  9. Hornostai, P. P., Bublyk, P. I., Lytvyn, M. O., Sliusarevskyi, M. M., Tatenko, V. O., Tytarenko, T. M., & Khazratova, N. V.; Sliusarevskyi, M. M. (Ed.). (2018). Osnovy sotsialnoi psykholohii [Basics of social psychology]. Kyiv, 578 p. [in Ukr.].
  10. Majers, D. (2019). Social’naya psiholоgiya [Social psychology]. St. Peterburg, 793 p. [in Russ.].
  11. Kemeni, Dzh., & Snell, Dzh. (1972). Kiber-neticheskoe modelirovanie: Nekotorye prilozheniya [Cybernetic modeling: Some applications]. Moscow, 192 p. [in Russ.].
  12. Bury, H., & Wagner, D. (2003). Application of Kemeny’s median for group decision support. Applied Decision Support with Soft Computing. Series: Studies in Fuzziness and Soft Computing. Vol. 124. Springer, Berlin, Heidelberg, P. 235–262.
  13. Granger, C. W. J., & Ramanathan, R. (1984). Improved methods of combining forecasts Journal of Forecasting. 3, 197–204.
  14. Davenport, A., & Kalagnanam, J. (2004). A computational study of the Kemeny Rule for preference aggregation proceeding. AAAI’04 Proc. of the 19th National Conference on Artifical Intelligence. San Jose, California, P. 697–702.
  15. Kamyshyn, V. V., & Reva, O. M. (2012). Metody systemnoho analizu u kvalimetrii navchalno-vykhovnoho protsesu [Methods of system analysis in the quality measurement of the educational process]. Kyiv, 270 p. [in Ukr.].
  16. Kamyshyn, V. V. (2013). Protsedura pobudovy mediany Kemeni yak ostatochnoi hrupovoi systemy perevah [The procedure for constructing the Kemeny median as a final group preference system]. Naukoiemni tekhnolohii [Scientific technologies]. 19 (3), 273–279. [in Ukr.].
  17. Buharin, S. N., Divueva, N. A., & Maryshev, E. A. (2014). Vybor rezul’tiruyushchego ranzhirovaniya v processe nauchno-tekhnicheskoj ekspertizy innovacionnyh proektov [The choice of the resulting ranking in the process of scientific and technical expertise of innovative projects]. Innovatika i ekspertiza [Innovation and expertise]. 1, 114–120. [in Russ.].
  18. Karatanov, A. V., & Druzhynyn, E. A. (2014). Informacionnye tekhnologii ekspertnogo ocenivaniya proektnyh reshenij pri formirovanii edinogo informacionnogo prostranstva [Information technologies for expert evaluation of design solutions in the formation of a single information space]. Modeliuvannia v ekonomitsi ta upravlinnia proektamy [Modeling in economics and project management]. 3, 155–160. [in Russ.].
  19. Boltenkov, V. A., Kuvaeva, V. I., & Poznyak, A. V. (2017). Analiz mediannyh metodov konsensusnogo agregirovaniya rangovyh predpochtenij [Analysis of Median Methods for Consensus Aggregation of Rank Preferences]. Informatyka ta matematychni metody v modeliuvanni [Informatics and mathematical methods in modeling]. 7 (4), 307–317. [in Russ.].
  20. Reva, O. M., Nevynitsyn, A. M., Shulhin, V. A., & Kamyshyn, V. V. (2020). Aprobatsiia mediany Kemeni dlia neparametrychnoi optymizatsii hrupovoi systemy perevah avia-dyspetcheriv na mnozhyni kharakternykh pomylok [Approbation of the Kemeny median for non-parametric optimization of the group system of preferences of air traffic controllers on a set of characteristic errors]. Suchasni informatsiini ta innovatsiini tekhnolohii na transporti (MINNT 2020) [Modern information and innovative technologies in transport (MINNT – 2020)]. Kherson, P. 18–21. [in Ukr.].
  21. Reva, O. M., Kamyshyn, V. V., Borsuk, S. P., Nevynitsyn, A. M., & Shulhin, V. A. (2020). Liudskyi chynnyk: Metodolohiia proaktyvnoi kvalymetrii zahroz pomylok aviadyspetcheriv [Human factor: Methodology of proactive risk assessment of air traffic controllers error threats]. Kyiv. 126 p. [in Ukr.].
  22. Reva, O. M., Kamyshyn, V. V., Shulhin, V. A., & Nevynitsyn, A. M. (2020). Systemnyi analiz: mediana Kemeni yak optymizatsiina model hrupovoi systemy perevah aviadyspetcheriv na nebezpekakh kharakternykh pomylok [System analysis: the Kemeny median as an optimization model of the group system of air traffic controllers’ preferences on the dangers of characteristic errors]. Nauka, tekhnolohii, innovatsii [Science, technology, innovation]. 3, 55–64. [in Ukr.].
  23. Reva, O. M., Yarotskyi, S. V., Zasanska, S. V., & Kamyshyn, V. V. (2021). Metody vdoskonalennia hrupovykh system [Methods of improving group systems]. XXVI Mizhnar. konhres dvyhunobudivnykiv [XXVI Mizhnar. congress of engine builders]. Kharkiv, P. 83–84. [in Ukr.].
  24. Reva, O. M., Borsuk, S. P., Zavhorodnii, S. O., Sahanovska, L. A., Zasanska, S. V., & Nasirov, Sh. Sh. (2021). Vstanovlennia «etalonnoi» systemy perevah aviadyspetcheriv na spektri kharakternykh pomylok [Establishing a “reference” system of preferences of air traffic controllers on the spectrum of characteristic mistakes]. Problemy staloho rozvytku morskoho transportu PSDMI-21 [Problems of sustainable development of maritime transport PSDMI-21]. Kherson, P. 75–80. [in Ukr.].
  25. Podinovskij, V. V., & Gavrilov, V. M. (1975). Optimizaciya po posledovatel’no primenyaemym kriteriyam [Optimization according to consistently applied criteria]. Moscow, 192 p. [in Russ.].
  26. Utkin, V. F., & Kryuchkov, Yu. V. (Eds.) (1988). Nadezhnost’ i effektivnost’ v tekhnike [Reliability and efficiency in engineering The efficiency of technical systems]. Moscow, Vol. 3, 328 p. [in Russ.].
  27. Voloshyn, O. F., & Mashchenko, S. O. (2010). Modeli ta metody pryiniattia rishen [Decision-making models and methods]. Kyiv, 336 p. [in Ukr.].
  28. Maliarets, L. M., & Minienkova, O. V. (2017). Vyrishennia problem bahatokryterialnosti v otsintsi diialnosti pidpryyemstva na osnovi metodiv bahatokryterialnoi optymizatsii [Solving the problems of multicriteria in the assessment of enterprise activity based on multicriteria optimization methods]. Problemy ekonomiky [Problems of the economy]. 1, 421–427. [in Ukr.].
  29. Marko, M. Ya., Tsehelyk, H. H., & Hrypynska, N. V. (2017). Vykorystannia metodu poslidovnoho vvedennia obmezhen dlia rozviazannia odniiei dvokryteralnoi zadachi planuvannia vyrobnytstva [Using the method of sequential introduction of constraints to solve one two-criterion problem of production planning]. Visnyk Khmelnytskoho natsionalnoho universytetu. Ekonomichni nauky [Bulletin of the Khmelnytskyi National University. Economic sciences]. 1, 95–99. [in Ukr.].
  30. Faizilberh, L. S., Zhukovska, O. A., & Yakymchuk, V. S. (2018). Teoriia pryiniattia rishen [Decision-making theory]. Kyiv, 246 p. [in Ukr.].
  31. Reva, O. M., Kamyshyn, V. V., Sahanovska, L. A., & Yarotskyi, S. V. (2022). Teoretychni osnovy modeliuvannia «kompromisu» u vymohakh do vsebichnoho rozvytku obdarovanosti tykh, khto navchaietsia [Theoretical foundations of modeling the “compromise” in the requirements for the comprehensive development of the gift-edness of those who study]. Osvita ta rozvytok obdarovanoi osobystosti [Education and development of a gifted personality]. 3 (86). P. 20–27. [in Ukr.].
  32. Borisov, A. N., Alekseev, A. V., Vilyums, E. R., Slyadz’, N. N., & Fomin, S. A. (1997). Intellektualnye sistemy prinyatiya proektnyh reshenij [Intelligent systems for making design decisions]. Riga, 317 p. [in Russ.].
  33. Tarasov, V. A., Gerasimov, B. M., Levin, I. A., & Kornejchuk, V. A. (2007). Intellektual’nye sistemy podderzhki prinyatiya reshenij: Teoriya, sintez, effektivnost’ [Intelligent Decision Support Systems: Theory, Synthesis, Efficiency]. Kyiv, 336 p. [in Russ.].
  34. Samohvalov, Yu. Ya., & Naumenko, E. M. (2007). Ekspertnoe ocenivanie: Metodicheskij aspekt [Expert assessment: methodological aspect]. Kyiv, 362 p. [in Russ.].
  35. Beshelev, S. D., & Gurvich, F. G. (1980). Matematiko-statisticheskie metody ekspertnyh ocenok [Mathematical and statistical methods of expert assess-ments]. Moscow, 263 p. [in Russ.].
  36. Orlov, A. I. (2011). Organizacionno-ekonomicheskoe modelirovanie. Ekspertnye ocenki [Organizational and economic modeling. Expert assessments]. P. 2. Moscow, 486 p. [in Russ.].
  37. Novosad, V. P., Selіverstov, R. G., & Artim, І. І. (Compilers) (2009). Kіl’kіsnі metodi ekspertnogo ocіnyuvannya [Quantitative methods of expert assessment]. Kyiv, 36 p. [in Ukr.].
  38. Saati, T. (1993). Prinyatie reshenij. Metod analiza ierarhij [Hierarchy Analysis Method]. Moscow, 314 p. [in Russ.].
  39. Krymskij, S. B. (1974). Nauchnoe znanie i ego transformaciya [Scientific knowledge and its transformation]. Kyiv, 207 p. [in Russ.].
  40. Prigozhin, I., & Stengers, I. (1986). Poryadok iz haosa: Novyj dialog cheloveka s prirodoj [Order out of chaos: A new dialogue between man and nature]. Moscow, 426 p. [in Russ.].
  41. Dobronravova, I. S. (1990). Synerhetyka: stanovlennia neliniinoho myslennia [Synergetics: the formation of non-linear thinking]. Kyiv, 152 p. [in Russ.].
  42. Haken, G. (2001). Principy raboty golovnogo mozga: Sinergeticheskij podhod k aktivnosti mozga, povedeniyu i kognitivnoj deyatel’nosti [How the Brain Works: A Synergistic Approach to Brain Activity, Behavior and Cognition]. Moscow, 353 p. [in Russ.].
  43. Dobronravova, I. S. (1990). Synerhetyka: stanovlennia neliniinoho myslennia [Synergetics: the formation of non-linear thinking]. Kyiv, 495 p. [in Russ.].
  44. Kremen, V. H., & Ilin, V. V. (2012). Synerhetyka v osviti: kontekst liudynotsentryzmu [Synergetics in the world: the context of people-centrism]. Kyiv, 368 p. [in Ukr.].
  45. Naumkina, O. A. (2015). Neliniine myslennia v suchasnomu shvydkoplynnomu sviti [Non-linear thought in the modern swedkoplin world]. Filosofiia nauky: tradytsii ta innovatsii [Philosophy of science: traditions and innovations]. 2 (12), 13–18. [in Ukr.].
  46. Reva, O. M., Kamyshyn, V. V., Radetska, S. V., Malynovshevska, A. V., Burdelna, Ye. A., & Lypchanska, L. M. (2019). Metody i modeli kvalimetrii synerhetychnoho efektu u dydaktytsi [Methods and models of the quality measurement of the synergistic effect in didactics]. Kyiv, 235 p. [in Ukr.].
  47. Azgal’dov, G. G., Kostin, A. V., & Sadovov, V. V. (2012). Kvalimetriya dlya vsekh [Qualimetry for all]. Moscow, 165 p. [in Russ.].
  48. Nisfoian, S. S., Sysolina, N. P., & Savelenko, H. V. (2020). Rozvytok metodu analizu iierarkhii yak mekhanizmu vyboru investytsiinoho proiektu na pidpryiemstvi [Development of the method of analysis of hierarchies as a mechanism for choosing an investment project at the enterprise]. Tsentralnoukrainskyi naukovyi visnyk. Ekonomichni nauky [Central Ukrainian scientific bulletin. Economic sciences]. 5 (38), 228–237. JEL Classification: O22, O14, C02. [in Ukr.].
  49. Volontyr, L. O., Potapova, N. A., Ushkalenko, I. M., & Chikov, I. A. (2020). Optymizatsiini metody ta modeli v pidpryiemnytskii diialnosti [Optimization methods and models in entrepreneurial activity]. Vinnytsia, 404 p. [in Ukr.].
  50. Vartanian, V. M., & Shteinbrekher, D. O. (2019). Zastosuvannia metodu analizu iierarkhii dlia pobudovy stratehii upravlinnia znanniamy vysokotekhnolohichnykh proektiv [Application of the method of analysis of hierarchies to build a knowledge management strategy of high-tech projects]. Radioelektronni i kompiuterni systemy [Radioelectronic and computer systems]. 2 (90), 118–126. [in Ukr.].
  51. Reva, O., & Kamyshyn, V. (2022). Systemno-informatsiine obgruntuvannia kryteriyiv uzghodzhenosti system perevah uchasnykiv osvitno-vykhovnoho protsesu [System and information substantiation of the criteria of consistency of preference systems of participants in the educational process]. Pedahohichni innovatsii: idei, realii, perspektyvy [Pedagogical innovations: ideas, realities, perspectives]. 1 (28), 70–78 (118). [in Ukr.].
  52. Reva, O. M., Kamyshyn, V. V., Kyrychenko, K. V., Yarotskyi, S. V., & Sahanovska, L. A. (2023). Formuvannia spektru systemno-infomatsiinykh kryteriiv uzghodzhenosti ekspertnykh dumok [Formation of the spectrum of system and information criteria for consistency of expert opinions]. Nauka, tekhnolohii, innovatsii [Science, technology, innovation]. 2 (26), 26–39. [in Ukr.].
  53. Nasirov, Sh. Sh. (2012). Bahatokrokova protsedura vyiavlennia statystychno-uzghodzhenoi systemy perevah aviadyspetcheriv na mnozhyni kharakternykh pomylok yikh diialnosti [A multi-step procedure for identifying a statistically consistent system of advantages of air traffic controllers based on a set of characteristic errors of their activity]. Komunalne hospodarstvo mist. Tekhnichni nauky i arkhitektura [Communal management of cities. Technical sciences and architecture]. 105, 461–475. [in Ukr.].
  54. Reva, O. M., Kamyshyn, V. V., Nevynitsyn, A. M., & Radetska, S. V. (2019). Bahatokrokova protsedura pryiniattia rishen shchodo uzghodzhenosti hrupovykh system perevah aviadyspetcheriv [A multi-step decision-making procedure for the consistency of group preference systems of air traffic controllers]. Tekhnichne rehuliuvannia, metrolohiia, informatsiini ta transportni tekhnolohii [Technical regulation, metrology, information and transport technologies]. Odesa. P. 147–152. [in Ukr.].
  55. Reva, O. M., Borsuk, S. P., & Kamyshyn, V. V. (2021). Tekhnolohiia usunennia statystychnoi pokhybky «toho, khto vyzhyv», vyznachenni u stavlenni aviadyspetcheriv do nebezpek pomylok [The technology for eliminating the statistical error of the “sur-vivor” in determining the attitude of air traffic controllers to the dangers of errors]. Aktualni problemy bezpeky na transporti, v enerhetytsi, infrastrukturi [Actual problems of safety in transport, energy, infrastructure]. Kherson, P. 112–116. [in Ukr.].
  56. Peregudov, F. I., & Tarasenko, F. P. (1989). Vvedenie v sistemnyj analiz [Introduction to system analysis]. Moscow, 367 p. [in Russ.].
  57. Anfilatov, V. S., Emel’yanov A. A., & Kukushkin, A. A. (2022). Sistemnyj analiz v upravlenii [System analysis in management]. Moscow, 368 p. [in Russ.].
  58. Hurochkina, V. V. (2019). Emerdzhentnist – fenomen skladnykh ekonomichnykh system [Emergence is a phenomenon of complex economic systems]. Visnyk Khmelnytskoho natsionalnoho universytetu [Bulletin of the Khmelnytskyi National University]. 6 (1), 60–68. [in Ukr.].
  59. Reva, O. M., Borsuk, S. P., Zasanska, S. V., & Yarotskyi, S. V. (2021). Teoretychni osnovy metodolohii intehratyvnoi otsinky stupenia investytsiinoi pryvablyvosti obiektiv intelektualnoi vlasnosti [Theoretical foundations of the methodology of integrative assessment of the degree of investment attractiveness of intellectual property objects]. Nauka, tekhnolohii, innovatsii [Science, technology, innovation]. 1, 3–16. [in Ukr.].
  60. Kamyshyn. V. V., Reva, O. M., Makarenko, L. M., & Medvedenko, O. M. (2012). Protsedura fazyfikatsii / defazyfikatsii baliv shkal otsiniuvannia [The procedure of fuzzification / defuzzification of scores of rating scales]. Elektronika ta systemy upravlinnia [Electronics and control systems]. 3, 53–62. [in Ukr.].
  61. Reva, O. M., Borsuk, S. P., Zasanska, S. V., & Yarotskyi, S. V. (2021). Aprobatsiia a-metodu porivniannia system perevah (na prykladi porivniannia system perevah aviadyspetcheriv na nebezpekakh kharakternykh pomylok) [Approbation of the a-method of comparing advantage systems (on the example of comparing the advantage systems of air traffic controllers on the dangers of characteristic errors)]. Intelektualni systemy pryiniattia rishen i problemy obchysliuvalnoho intelektu [Intelligent decision-making systems and problems of computational intelligence]. Kherson, P. 63–64. [in Ukr.].
  62. Reva, O., Kamyshyn, V., Borsuk, S., Shulgin, V., & Nevynitsyn, A. (2021). Qualitative Indexes of Air Traffic Controllers Attitude Toward Mistakes Hazard. Advances in Human Factors and Ergonomics 2021: 12th International Conference on Applied Human Factors and Ergonomics and the Affiliated Conferences (AHFE 2021). Springer, P. 618–624.
  63. Blyumberg, V. A., & Glushchenko, V. F. (1982). Kakoe reshenie luchshe? Metod rasstanovki prioritetov [What is the best solution? Prioritization Method]. Leningrad, 160 p. [in Russ.].