Science, Technologies, Innovations №4(24) 2022, 31-44 p

 PDF

http://doi.org/10.35668/2520-6524-2022-4-03

Pivovarov O. A. — D. Sс. of Engineering, Professor of the Department of Agricultural Products Processing and Storage Technologies, Dnipro State Agrarian and Economic University, Serhiy Yefremov Str., 25, Dnipro, 49000; +38 (097) 342-46-60; apivo@ua.fm; ORCID: 0000-0003-0520-171X

Kovalоva O. S. — PhD in Engineering, Associate Professor of the Department of Agricultural Products Processing and Storage Technologies, Dnipro State Agrarian and Economic University, Serhiy Yefremov Str., 25, Dnipro, 49000; +38(096) 781-29-64; livre@i.ua; ORCID: 0000-0002-9508-2701

Matsyuk Ch. V. — Master Student of the Department of Agricultural Products Processing and Storage Technologies, Dnipro State Agrarian and Economic University, Serhiy Yefremov Str., 25, Dnipro, 49000; +38 (067) 142-13-57; kristinamacuk85@gmail.com; ORCID: 0000-0001-9138-4537

INNOVATIVE GRAIN GERMINATION STIMULATORS OF NATURAL ORIGIN

Abstract. An important issue of the agro-technological sector of Ukraine is to find optimal conditions and resources for the germination of grains of various crops. Innovative technological factors are necessary for their rapid growth, stable transfer of changes in conditions, production of high-quality products for long-term storage. So, in order to obtain the necessary technological properties of germinated grain, it was researched and determined which natural germination stimulator best meets today’s requirements. Mung bean seeds were selected for germination; crushed eggshell, chlorophyllipt, calcium gluconate were used as a germination stimulator. An improvement in the taste qualities of sprouted grain and an increase in germination rates were noted.

Keywords: microgreens, healthy food, vitamins, mung bean crop, soil, growth stimulants of natural origin.

REFERENCES

  1. Mostenska, T. L., Mostenska, T. G., Yurii, E., Lakner, Z., & Vasa, L. (2022). Economic affordability of food as a component of the economic security of Ukraine. PLoS ONE. 17(3), e0263358.  https://doi.org/10.1371/journal.pone.0263358.
  2. Kovalova, O., & But, Yu. (2020). Vykorystannia prorostkiv v ozdorovchomu kharchuvanni [The use of sprouts in health food]. Naukovi zdobutky molodi – vyrishenniu problem kharchuvannia liudstva u XXI stolitti (2–3 kvitnia 2020 r.). – Scientific achievements of youth – solving the problems of human nutrition in the XXI century (April 2–3, 2020). Kyiv. Ch. 1. P. 14. [in Ukr.]
  3. Pratama, F. (2022). Green Technology in Food Processing: Creating a Better Future for the Next Generation. IOP Conf. Series: Earth and Environmental Science 995 012014. P. 1–14. https://doi.org10.1088/1755-1315/995/1/012014.
  4. Zhang, Ya., Xiao, Zh., Ager, E., Kong, L., & Tan, L. (2021). Nutritional quality and health benefits of microgreens, a crop of modern agriculture. Journal of Future Foods, 1 (1), 58–66. https://doi.org/10.1016/j.jfutfo.2021.07.001.
  5. Renna, M., & Paradiso, V. M. (2020). Ongoing Research on Microgreens: Nutritional Properties, Shelf-Life, Sustainable Production, Innovative Growing and Processing Approaches. Foods. 9 (6), 826. https://doi.org/10.3390/foods9060826.
  6. Weber, C. F. (2017). Broccoli Microgreens: A Mineral-Rich Crop That Can Diversify Food Systems Front. Nutr., 23 March. Sec. Plant Nutrition. https://doi.org/10.3389/fnut.2017.00007.
  7. Kyriacou, M. C., De Pascale, S., Kyratzis, A., & Rouphael, Y. (2017). Microgreens as a Component of Space Life Support Systems: A Cornucopia of Functional Food. Front Plant Sci, Sep. 12, 8:1587. https://doi.org10.3389/fpls.2017.01587.
  8. Ellen, R., Turner, Ya., Luo, R., & Buchanan, L. (2020). Microgreen nutrition, food safety, and shelf life: A review. Journal of Food Science, 85 (4), 870–882. https://doi.org/10.1111/1750-3841.15049.
  9. Tuan, Ph. A., Sun, M., Nguyen, T.-N., Park, S., & Ayele, B. T. (2019). Molecular mechanisms of seed germination, Sprouted Grains, AACC International Press, P. 1–24. https://doi.org/10.1016/B978-0-12-811525-1.00001-4.
  10. Han, C., & Yang, P. (2015). Studies on the molecular mechanisms of seed germination. Proteomics, 15 (10), 1671-9. https://doi.org10.1002/pmic.201400375.
  11. Aloo, S. O., Ofosu, F. K., Kilonzi, S. M., Shabbir, U., & Oh. D. H. (2021). Edible Plant Sprouts: Health Benefits, Trends, and Opportunities for Novel Exploration. Nutrients, 21, 13(8), 2882. https://doi.org10.3390/nu13082882.
  12. Zhang, Q., Liu, R., Geirsdóttir, M., Li, S., Tomasson, T., Xiong, S., Li, X., & Gudjónsdóttir, M. (2022). Thermal-Induced Autolysis Enzymes Inactivation, Protein Degradation and Physical Properties of Sea Cucumber, Cucumaria frondosa. Processes, 10, 847. https://doi.org/10.3390/pr10050847.
  13. Zhang, Ya., Xiao, Zh., Ager, E., Kong, Lingyan., Tan, L. (2021). Nutritional quality and health benefits of microgreens, a crop of modern agriculture, Journal of Future Foods, 1 (1), P. 58–66. https://doi.org/10.1016/j.jfutfo.2021.07.001.
  14. Renna. M., & Paradiso, V. M. (2020). Ongoing Research on Microgreens: Nutritional Properties, Shelf-Life, Sustainable Production, Innovative Growing and Processing Approaches. Foods, 9 (6), 826. https://doi.org10.3390/foods9060826.
  15. Volodin, S. (2017). Metodychni zasady fastplant-tekhnolohii shvydkoho vyrobnytstva nishevykh kultur [Methodological principles of fastplant technologies for rapid production of niche crops]. Agricultural and Resource Economics, 3 (4), P. 43–56. Retrieved from: http://are-journal.com/are/article/view/134 [in Ukr.]
  16. Udova, L., & Prokopenko, K. (2018). Nishevi kultury – novi perspektyvy dlia malykh subiektiv hospodariuvannia v ahrarnomu rynku [Niche crops are new prospects for small businesses in the agricultural market]. Ekonomika silskoho hospodarstva Economics of agriculture. 3, P. 102–117. https://doi.org/10.15407/eip2018.03.102 [in Ukr.].
  17. Sehrawat, N., Yadav, M., Sharma, A. K., Kumar, S., Singh, M., & Kumar, V., et al. (2021). Mungbean (Vigna radiata L. Wilczek) as Functional Food, Agronomic Importance and Breeding Approach for Development of Climate Resilience: Current Status and Future Perspectives. Asian Journal of Biological and Life Sciences, Jan-Apr, 10 (1), Р. 87–92. https://doi.org10.5530/ajbls.2021.10.14.
  18. Hou, D., Yousaf, L., Xue, Y., Hu, J., Wu, J., Hu, X., Feng, N., & Shen, Q. (2019). Mung Bean (Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients, 11, 1238. https://doi.org/10.3390/nu11061238.
  19. Pookpakdi, A., Promkham, V., Chuangpetchinda, C., Pongkao, S., Lairungrueng, C., & Tawornsuk, C. (1992). Growth stage identification in mungbean (Vigna radiata (L.) Wilczek). Agriculture and Natural Resources, 26 (1), 75–80.
  20. Batzer, J. C., Singh, A., Rairdin, A., Chiteri, K., & Mueller, D. S. (2022). Mungbean: A Preview of Disease Management Challenges for an Alternative U.S. Cash Crop. Journal of Integrated Pest Management, 13 (1), 4, https://doi.org/10.1093/jipm/pmab044.
  21. Bangar, P., Chaudhury, A., Tiwari, B., Kumar, S., Kumari, R., & Bhat, K.V. (2019). Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turk J Biol., 43(1). 58–69. https://doi.org10.3906/biy-1801-64.
  22. Yi-Shen, Z., Shuai, S., & FitzGerald, R. (2018). Mung bean proteins and peptides: nutritional, functional and bioactive properties. Food Nutr Res, 62. https://doi.org10.29219/fnr.v62.1290.
  23. Lopes, L. A. R., Martins, M. D. C. C. E., Farias, L. M., Brito, A. K. D. S., Lima, G. M., & Carvalho, V. B. L. et al. (2018). Arêas JAG, Silva KJDE, Frota KMG. Cholesterol-Lowering and Liver-Protective Effects of Cooked and Germinated Mung Beans (Vigna radiata L.). Nutrients, 10 (7), 821. https://doi.org10.3390/nu10070821.
  24. Liu, D., Guan, X., Huang K, Li, S., Liu. J., Yu, W., & Duan, R. (2019). Protective effects of mung bean (Vigna radiata L.) and pea (Pisum sativum L.) against high-fat-induced oxidative stress. Food Sci Nutr, 7 (12), 4063–4075. https://doi.org10.1002/fsn3.1271.
  25. Ali, N. M., Mohd Yusof, H., Yeap, S. K., Ho, W. Y., Beh, B. K., & Long, K., et al. (2014). Anti-inflammatory and antinociceptive activities of untreated, germinated, and fermented mung bean aqueous extract. Evid Based Complement Alternat Med., 2014, 350507. https://doi.org10.1155/2014/350507.
  26. El-Adawy, T., Rahma, E., & El-Bedawey, A. et al. (2003). Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant Foods Hum Nutr, 58, 1–13. https://doi.org/10.1023/B:QUAL.0000040339.48521.75.
  27. Kumar, Ganesan, & Baojun, Xu. (2018). A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata),Food Science and Human Wellness, 7 (1), 11–33. https://doi.org/10.1016/j.fshw.2017.11.002.
  28. Guo, X., Li, T., Tang, K., & Liu, R. H. (2012). Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata). J Agric Food Chem, 60 (44), 11050-5. https://doi.org10.1021/jf304443u.
  29. Jinapang, P., Prakob, P., Wongwattananard, P. Islam, Naz E., & Kirawanich, Ph. (2010). Growth characteristics of mung beans and water convolvuluses exposed to 425-MHz electromagnetic fields Bioelectromagnetics, 31, 519–527. https://doi.org/10.1002/bem.20584.
  30. Fan, L., Liu, X., Ma, Yu., & Xiang, Q. (2020). Effects of plasma-activated water treatment on seed germination and growth of mung bean sprouts, Journal of Taibah University for Science, 14 (1), 823–830. https://doi.org/10.1080/16583655.2020.1778326.
  31. Liu, B., Yang, H., Honnorat, B., & Rousseau, A. (2018). Investigation of key plasma species on germination boosting of Mung bean. 22nd international conference on gas discharges and their application, Sep 2018, Novi Sad, Serbia.
  32. Wei, Y., Wang, X., Shao, X., Xu, F., & Wang, H. (2019). Sucrose treatment of mung bean seeds results in increased vitamin C, total phenolics, and antioxidant activity in mung bean sprouts. Food Sci Nutr, 7 (12), 4037–4044. https://doi.org10.1002/fsn3.1269.
  33. Cao, J., Wang, Y., Wang, G., Ren, P., Wu, Y., & He, Q. (2022). Effects of Typical Antimicrobials on Growth Performance, Morphology and Antimicrobial Residues of Mung Bean Sprouts. Antibiotics, 11, 807. https://doi.org/10.3390/antibiotics11060807.
  34.  Ahmed, T. A. E., Wu, L., Younes, M. & Hincke, M. (2021). Biotechnological Applications of Eggshell: Recent Advances. Front. Bioeng. Biotechnol. 9, 675364. https://doi.org/10.3389/fbioe.2021.675364.
  35. King’ori, A. (2011). A Review of the uses of poultry eggshells and shell membranes. International Journal of Poultry Science. 10 (11), 908–912. https://doi.org10.908-912
  36.  Sachuk, R. M., Stravsky, Ya. S., Horyuk, Yu. V., Katsaraba, O. A., & Zhyhalyuk, S. V. (2019). Selection of the optimal composition of vegetable il and chlorophyllipt oil components. Ukrainian journal of veterinary and agricultural sciences, 3. Retrieved from: https://cyberleninka.ru/article/n/selection-of-the-optimal-composition-of-vegetable-oil-and-chlorophyllipt-oil-components.
  37. Zepka, L. Q., Jacob-Lopes, E., & Roca, M. (2019). Catabolism and bioactive properties of chlorophylls. Current Opinion in Food Science. 26, 94–100, https://doi.org/10.1016/j.cofs.2019.04.004.
  38. Seely, G. R. (1972). Photosesitization reactions of chlorophyll, Methods in Enzymology, Academic Press. 24, 238–246. https://doi.org/10.1016/0076-6879(72)24071-X.
  39. Robinson, C., Barnett, N. M., & Gauch, H. G. (1975). Calcium nutrition and sodium absorption in mung bean sprouts, Communications in Soil Science and Plant Analysis.(5), 535–543. https://doi.org/10.1080/00103627509366590.
  40. Liptay, A., & Vandierendonck, P. (1987). Calcium retards physiological collapse and subsequent microbial degradation of mung bean (Vigna radiata L. Wilczek) sprouts. Can. J. Plant Sci. 672, 537–548.
  41. White, Ph. J., & Broadley, M. R. (2003). Calcium in Plants. Annals of Botany. 92 (4), 487–511. https://doi.org/10.1093/aob/mcg164.
  42. Akhtar, N., Ilyas, N., Arshad, M., Meraj, T. A., Hefft, D. I., & Jan, B. L. et. al. (2022). The Impact of Calcium, Potassium, and Boron Application on the Growth and Yield Characteristics of Durum Wheat under Drought Conditions. Agronomy. 12, 1917. https://doi.org/10.3390/agronomy12081917.
  43. Hepler, P. K. (2005). Calcium: a central regulator of plant growth and development. Plant Cell, 17 (8), 2142-55. https://doi.org/10.1105/tpc.105.032508.