Science, Technologies, Innovations №2(22) 2022, 36-46 p


Pivovarov O. A. — D. Sc. in Engineering, Professor, Professor of the Department of Agricultural Products Processing and Storage Technologies, Dnipro State Agrarian and Economic University, Serhiy Yefremov Str., 25, Dnipro, 49000; +38 (097) 342-46-60;; ORCID: 0000-0003-0520-171X

Mykolenko S. Yu. — PhD in Engineering, Associate Professor, Associate Professor of the Department of Agricultural Products Processing and Storage Technologies, Dnipro State Agrarian and Economic University, Serhiy Yefremov Str., 25, Dnipro, 49000; +38 (098) 964-26-84;; ORCID: 0000-0002-1959-1141

Markin A. M. — Master of the Department of Agricultural Products Processing and Storage Technologies, Dnipro State Agrarian and Economic University, Serhiy Yefremov Str., 25, Dnipro, 49000; + 38 (098) 030-25-94;; ORCID: 0000-0003-3169-1126


Abstract. Over 2500 years ago Hippocrates said: “Let food be your medicine and medicine be your food”. From this position, a literature review in determining effective preventive and health-improving nutrition during the Covid-19 pandemic was carried out, measures to reduce the risk of a vulnerable viral disease using available foods with specific properties that can accelerate the recovery process and reduce various complications that accompany in case of Covid-19 disease was considered. A wide range of valuable foodstuffs, widely consumed of plant and animal origin, are presented, which to a certain extent help to get out of a serious illness without any complications, supply the human body with the necessary components that can block the spread of a viral infection and create immune resistance in the human body. Attention is paid to Chinese folk medicine, which during the Covid-19 epidemic in China played a role in the treatment of coronavirus among a wide range of people. The role of well-known vitamins in wellness and preventive nutrition in order to improve the general condition of people who survived the Covid-19 disease is shown.

Keywords: coronavirus, food, immunity, vitamins, tuna, kefir, nutrients, chicken soup.


  1. Roujian, Lu, Xiang, Zhao, Juan, Li, Peihua, Niu, Bo, Yang, & Honglong, Wu et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395, (10224), P. 565-574. DOI:
  2. Yesudhas, D., Srivastava, A., & Gromiha, M. M. (2021 Apr.). COVID-19 outbreak: history, mechanism, transmission, structural studies and therapeutics. Infection, 49 (2), P. 199-213. DOI:
  3. Salim S. Abdool Karim, & Quarraisha Abdool Karim (2021). Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic, The Lancet, 398, (10317), 2021, P. 2126-212. DOI: .
  4. Christie, B. (2021). Covid-19: Early studies give hope omicron is milder than other variants. BMJ, 375 : n3144. DOI:
  5. Greenhalgh, T., Jimenez, J. L., Prather Tufekci, K. A. Z., Fisman, D., & Schooley, R. (2021). Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet. 1, 397 (10285): 1603-1605. DOI:
  6. Aman, F, & Masood, S. (2020). How Nutrition can help to fight against COVID-19 Pandemic. Pak J Med Sci, 36 (COVID19-S4): S121-S123. DOI:
  7. Zhipeng, Yu, Ruotong Kan, Huizhuo Ji, Sijia Wu, Wenzhu Zhao, & David Shuian et al. (2021). Identification of tuna protein-derived peptides as potent SARS-CoV-2 inhibitors via molecular docking and molecular dynamic simulation. Food Chemistry, 342, 128366. DOI:
  8. Chang, CL, & Deckelbaum, RJ. (2013). Omega-3 fatty acids: mechanisms underlying ‘protective effects’ in atherosclerosis. Curr Opin Lipidol, 24 (4): 345-350. DOI:
  9. The Lancet Diabetes & Endocrinology, Vitamin D and COVID-19: why the controversy? (2021). The Lancet Diabetes & Endocrinology, 9 (2), P. 53. DOI:
  10. Wichniak, A., Kania, A., Siemiński, M., & Cubała, WJ. (2021). Melatonin as a Potential Adjuvant Treatment for COVID-19 beyond Sleep Disorders. Int J Mol Sci., 22 (16): 8623. Published 2021 Aug 11. DOI:
  11. Jingqian, Xie, Zhihe, Bian, Qiang, Wu, Lin, Tao, Feng, Wu, & Tian, Lin. (2021). Global knowledge domain and prospects in tuna research: A bibliometric analysis. Aquaculture and Fisheries, 2021, P. 1-9. DOI:
  12. Jin, Z., Du, X., & Xu, Y. et al. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582, 289-293. DOI:
  13. Beyerstedt, S., Casaro, E. B. & Rangel, É. B. (2021). COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis, 40, 905-919. DOI:
  14. Afzal, Sh., Bimalendu, A., Sanela, M., Azeema, M., Suniya, Sh., & Heinz-Bernhard, A. K. (2015). Electron transfer in peptides. Chem. Soc. Rev., 44, 1015-1027. DOI:
  15. Russo, M., Moccia, S., Spagnuolo, C., Tedesco, I., & Russo, GL. (2020). Roles of flavonoids against coronavirus infection. Chem Biol Interact, 2020, 328:109211. DOI:
  16. Zhu, Yue & Xie, De-Yu. (2020). Docking Characterization and in vitro Inhibitory Activity of Flavan-3-ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2. Frontiers in Plant Science, 11, P. 1884. DOI:
  17. Reham, S. H., Ashwag, Sh., Abdelaal, A. M., Nasser, A. Z., Afrah, E. M., & Bin-Meferij, M. M. (2021). Kefir: A protective dietary supplementation against viral infection. Biomedicine & Pharmacotherapy, 133 (110974). DOI:
  18. Gitishree, D., Spiros, P., Sivamaruthi, B. S., Hanny, W. Ch., Sigit, S., & Nevin, S. et al. (2020). Traditional fermented foods with anti-aging effect: A concentric review. Food Research International, 134, 109269. DOI:
  19. Gaucher, F., Bonnassie, S., Rabah, H., Marchand, P., Blanc, Ph., & Jeantet, R. et al. (2019). Review: Adaptation of Beneficial Propionibacteria, Lactobacilli, and Bifidobacteria Improves Tolerance Toward Technological and Digestive Stresses. Frontiers in Microbiology, 10, P. 841. DOI:
  20. Muhialdin, B. J., Zawawi, N., Abdull Razis, A. F., Bakar, J., & Zarei, M. (2021). Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control, 127: 108-140. DOI:
  21. Xian, Y., Zhang, J., Bian, Z., Zhou, H., Zhang, Z., & Lin, Z. et al. (2020, Jul). Bioactive natural compounds against human coronaviruses: a review and perspective. Acta Pharm Sin B, 10 (7): 1163-1174. DOI:
  22. Ferrer, G., Betancourt, A., Celeste Go, C., Vazquez H., B. Westover J., & Cagno, V. et al. (2020). A Nasal Spray Solution of Grapefruit Seed Extract plus Xylitol Displays Virucidal Activity Against SARS-Cov-2 In Vitro. bioRxiv 2020.11.23. 394114. DOI:
  23. Rajarshi, B., Aayatti, G. M., Suranjita, M., Sukhendu, M., & Swadesh, R. B. (2021). A natural food preservative peptide nisin can interact with the SARS-CoV-2 spike protein receptor human ACE2. Virology, Vo. 552, P. 107-111. DOI:
  24.  Bao, L., Deng, W., & Huang, B. et al. (2020). The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature, 583, 830-833. DOI:
  25.  Prajapati, V. ., Maheriya, P. M., Jani, G. K., & Solanki, H. K. (2014). Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym, 25; 105: 97-112. DOI:
  26. Lim, J. Y., Jessop, Z. M., Gibson, J. A. G., Jovic, T. H., Combellack, E., & Dobbs, T. D. et al. (2021). Design and Implementation Of ICE-COVID, A Double-Blind Randomised Placebo-Controlled Trial on The Efficacy of Iota-Carrageenan Nasal and Throat Spray for Covid-19 Prophylaxis. British Journal of Surgery, 108, Issue Supplement_6, 2021, znab 259.508. DOI:
  27. Aman, F., & Masood, S. (2020). How Nutrition can help to fight against COVID-19 Pandemic. Pak J Med Sci. 2020;36(COVID19-S4): S121-S123. DOI:
  28. Forman, R., Shah, S., Jeurissen, P., Jit, M., & Mossialos, E. (2021). COVID-19 vaccine challenges: What have we learned so far and what rema ins to be done? Health Policy, 125, (5), P. 553-567. DOI:
  29. Ragab, D., Eldin, H. S., Taeimah, M., Khattab, & R., Salem, R. (2020). The COVID-19 Cytokine Storm; What We Know So Far. Frontiers in Immunology, 11, P. 1446. DOI:
  30. Ouassou, H., M Bouhrim, K., Daoudi, N. E., Imtara, H., Bencheikh, N., & ELbouzidi, A. et al. (2020). The Pathogenesis of Coronavirus Disease 2019 (COVID-19): Evaluation and Prevention. J Immunol Res., 10, 2020: 1357983. DOI:
  31. Yang, Y., Islam, M. S., Wang, J., Li, Y., & Chen, X. (2020). Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective. Int J Biol Sci, 16 (10): 1708-1717. DOI:
  32. Jo, S., Kim, S., Shin, D. H., & Kim, M. S. (2020 Dec.). Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem, 35 (1): 145-151. DOI:
  33.  Wang, Z., & Yang, L. (2021, Apr.). Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts. J Ethnopharmacol, 24; 270: 113869. DOI:
  34. Hossain, Md. F., Hasana, S., Mamun, A. Al, Uddin, Md. S., Imam Ibne Wahed, M., Sarker, S. et al. (2020). COVID-19 Outbreak: Pathogenesis, Current Therapies and Potentials for Future Management. Frontiers in Pharmacology, 11,  P. 1590. DOI:
  35. Stephensen, C.B., & Lietz, G. (2021, Dec.) Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. Br J Nutr, 14, 126 (11): 1663-1672. DOI:
  36. Yang, R., Smolders, I. & Dupont, A. (2011). Blood pressure and renal hemodynamic effects of angiotensin fragments. Hypertens Re,s 34, 674–683. DOI:
  37.  Yuan, S., Mason, A. M., Carter, P. et al. (2021). Homocysteine, B vitamins, and cardiovascular disease: a Mendelian randomization study. BMC Med 19, 97. DOI:
  38. Kumrungsee, Th., Zhang, P., Chartkul, M., Yanaka, N., & Kato, N. (2020). Kumrungsee Thanutchaporn. Potential Role of Vitamin B6 in Ameliorating the Severity of COVID-19 and Its Complications. Frontiers in Nutrition, 7, P. 220. DOI:
  39. Alshammari, E. (2021). Vitamin B12 Deficiency in COVID-19 Recovered Patients: Case Report. International Journal of Pharmaceutical Research (09752366); 13 (1): 482-485, 2021. DOI:
  40. Batista, K. S., Cintra, V. M, Lucena, P. A., F., Manhães-de-Castro, R., Toscano, A. E., & Costa, L. P. et al. (2021). The role of vitamin B12 in viral infections: a comprehensive review of its relationship with the muscle–gut–brain axis and implications for SARS-CoV-2 infection. Nutrition Reviews, 092. DOI:
  41.  Milani, G. P., Macchi, M., & Guz-Mark, A. (2021). Vitamin C in the Treatment of COVID-19. Nutrients, 13 (4): 1172. Published 2021 Apr 1. DOI:
  42.  Cerullo, G., Negro, M., Parimbelli, M., Pecoraro, M., Perna, S., Liguori, G. et al. (2020, Oct). The Long History of Vitamin C: From Prevention of the Common Cold to Potential Aid in the Treatment of COVID-19. Front Immunol, 28; 11:574029. DOI:
  43.  Baladia, E., Pizarro, A. B., & Rada, G. (2020). Vitamin C for the treatment of COVID-19: A living systematic review. medRxiv 2020.04.28.20083360. DOI:
  44.  Lordan, R. (2021, Feb.). Notable Developments for Vitamin D Amid the COVID-19 Pandemic, but Caution Warranted Overall: A Narrative Review. Nutrients. 26; 13(3):740. DOI:
  45.  Iddir, M., Brito,  A., Dingeo,  G., Del Campo, Fernandez, Sosa, S.,  Samouda,  H. et al. (2020). Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients, 12 (6). DOI:
  46.  Borsche, L, Glauner, B., & von Mendel, J. (2021, Oct.). COVID-19 Mortality Risk Correlates Inversely with Vitamin D3 Status, and a Mortality Rate Close to Zero Could Theoretically Be Achieved at 50 ng/mL 25(OH)D3: Results of a Systematic Review and Meta-Analysis. Nutrients, 14, 13 (10): 3596. DOI:
  47. Toledano, J. M., Moreno-Fernandez, J., Puche-Juarez, M., Ochoa, J. J., & Diaz-Castro, J. (2022). Implications of Vitamins in COVID-19 Prevention and Treatment through Immunomodulatory and Anti-Oxidative Mechanisms. Antioxidants, 11, 5. DOI:
  48. Allotey, J., Stallings, E., Bonet, M. et al. (2020). Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ, 370 :m3320. DOI:
  49. Samad, N., Dutta, S., Sodunke, T.E., Fairuz, A., Sapkota, A., Miftah, Z.F. et al. (2021). Fat-Soluble Vitamins and the Current Global Pandemic of COVID-19: Evidence-Based Efficacy from Literature Review. J Inflamm Res, 14: 2091-2110. DOI:
  50.  Kumar, P., Kumar, M., Bedi, O. et al. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacol. 29, 1001-1016 (2021). DOI:
  51.  Beigmohammadi, M. T., Bitarafan, S., & Hoseindokht, A. et al. (2021). The effect of supplementation with vitamins A, B, C, D, and E on disease severity and inflammatory responses in patients with COVID-19: a randomized clinical trial. Trials 22, 802. DOI:
  52. Gombart, A. F., Pierre, A., & Maggini, S. (2020). A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients12, 236. DOI:
  53. Stephens, K. C., Alagappan, V., & Shah, R. (2021). Understanding Nutritional Approaches Towards Preventing COVID-19 Infections and Disease Progression. Journal of Respiratory Research, 7 (1), 155-157. Retrieved from: http //
  54. Rubin, R. (2020). As Their Numbers Grow, COVID-19 “Long Haulers” Stump Experts. JAMA, 324 (14), 1381-1383. DOI:
  55. Adebayo, A., Varzideh, F., Wilson, S., Gambardella, J., Eacobacci, M., & Jankauskas, S. et al. (2021). l-Arginine and COVID-19: An Update. Nutrients, 13 (11), 3951. DOI:
  56. Holdoway, A. (2020). Nutritional management of patients during and after COVID-19 illness. Br J Community Nurs, 1, 25 (Sup8): S6-S10. DOI: 10.12968/bjcn.2020.25.Sup8.S6.
  57.  Rosner, F. (1980, Oct.). Therapeutic efficacy of chicken soup. Chest, 78 (4), 672-4. DOI:
  58. Saketkhoo, K., Januszkiewicz, A., & Sackner, M. A. (1978). Effects of drinking hot water, cold water, and chicken soup on nasal mucus velocity and nasal airflow resistance. Chest, 74 (4), 408-10. DOI:
  59. Brown, L. K., Miller, A. & Miller, E. (2020). Chicken Soup for the Treatment of Respiratory Infections, Chest, 158 (5), 2231-2232. DOI: